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7 Radiation 

In this chapter, the theoretical basis of Meteonorm is presented. To keep the length of the text within 
reasonable limits, some of the material (i.e. longer explanations) has been omitted. References are 
made to the contribution in Solar Energy concerning interpolation and generation of radiation data 
(Remund et al., 1998) and the technical publication on data interpolation presented at the 14th Solar 
Energy PV Conference in Barcelona (Remund and Kunz, 1997). 

7.1 Reference time in Meteonorm  
Hourly values are designated by the end time of the interval. Thus the value for 14.00 hours refers to 
the average value of the interval from 13.00 to 14.00 hours. The central value of this interval is 13.30 
hours. The computer program contains an internal time reference in minutes, which defines the 
position of the center of the interval in relation to the end time. In the example given here it is -30 
minutes. 

The reference time can be changed in the program. Alterations are, however, only necessary in two 
cases: 

1. When hourly values whose central value does not correspond to the half-hour are imported. 
2. When hourly values whose central value does not correspond to the half-hour are to be generated. 

Example of 1: Measured values are assumed to be available. The measurement interval extended 
from one half-hour to the next (e.g. 00:30 to 01:30). The hourly average was calculated 
based on this interval and stored at the end time (e.g. 01:30). As, however, Meteonorm 
only allows integer hourly values (h) from 1 to 24,  it is only possible to use the full hour 
(e.g. 1) as end time for the interval. The computer program must be in a position to 
determine by how much the given end time (e.g. 1) differs from the effective center 
value (e.g. 01:00). As the measurement interval (e.g. 01:00) corresponds in this 
example to the given end time (e.g. 1), the reference time required by Meteonorm 
(IZRM = difference between the effective center of the interval and the given end time 
in minutes) is 0. 

Example of 2: Hourly values are to be generated using the reference time for measured data of the 
Swiss Meteorological Office (SMA). The measurement interval of the SMA extends from 
10 minutes before the full hour to 20 minutes before the next full hour (e.g. 00:50 to 
01:40), e.g. the 10-minute values are averaged and stored at the end time (e.g. 01:40). 
The center of the interval is 10 minutes after the full hour (e.g. 01:10). The end time 
output in the Meteonorm computer program corresponds to the full hour (e.g. 1). The 
effective center of the interval (e.g. 01:10) differs in this case by 10 minutes from the 
given end time (e.g. 1). Meteonorm thus requires 10 as reference time. 
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7.2 Worldwide interpolation of 
meteorological data 

For the simulation of solar energy systems, meteorological data from all parts of the world is needed. 
For many regions, measured data may only be applied within a radius of 50 km from weather stations. 
This makes it necessary to interpolate parameters between stations. The method given below enables 
the data to be interpolated and monthly values to be obtained for almost all points of the globe.  

7.2.1 Methods 

To calculate meteorological data for any desired location in the world, an interpolation procedure must 
be applied. For global radiation, this is done with a 3-D inverse distance model (Shepard’s gravity 
interpolation), based on the introduction by Zelenka et al. (1992) (IEA Task 9), with additional North-
South distance penalty (Wald and Lefèvre, 2001), where: 
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 (7.2.1) 

wi :  weight i wk :  sum of overall weights  
R : search radius (max. 2000 km) v : vertical scale factor  
s :  horizontal (geodetic) distance [m] zx, zi :  altitudes of the sites [m]  

i: Number of sites (maximum 6) i , x: latitudes of the points 
gv: vertical gradient 

The vertical scale factor v and the vertical gradient gv are depending on the parameter (Tab. 7.2.1).  

Tab. 7.2.1: Monthly vertical scale factors v and gradients gv for interpolation 

Parameter v gv 

Gh 150 0.0 

Ta 400 0.001 

Td 400 0.002 

FF 300 0.0 

RR 200 0.0 

Rd 300 0.0 

Sd 400 0.002 
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The other parameters (temperature, wind, humidity and rain) can be interpolated using similar 
procedures. The vertical factor v in Eqn. 7.2.1 is adjusted to get the smallest deviations. For 
interpolating temperature and wind data, further information on local effects is needed. The influence 
of the sea shore is considered in the following way: increased wind speed (1 m/s) for all months, 
increased temperature in winter, and lower temperature in summer (not applied to tropical regions) 
(Tab 7.2.2). 

Tab. 7.2.2: Monthly correction factors for temperature for local features in °C (slightly modified sia 
model) 

Feature  Zone Jan Feb Mar April May June July Aug Sep Oct Nov Dec 

open A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

depression A -1.6 -0.7 -0.5 -0.4 -0.4 -0.3 -0.3 -0.2 -0.2 -0.4 -0.7 -1.2 

cold hollow A -3.9 -2.8 -1.7 -0.4 -0.4 -0.3 -0.3 -0.2 -0.2 -1.0 -2.2 -3.8 

sea/lake A 1.2 0.8 0.0 -0.5 -0.7 -0.7 -0.4 -0.1 0.4 0.6 0.7 1.1 

city A 1.1 1.0 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 1.1 1.2 

S-facing incline N 1.8 1.2 1.0 0.8 0.8 0.6 0.8 0.8 1.1 1.4 1.7 1.7 

S-facing incline S 3.4 2.9 1.9 1.3 1.3 1.3 1.5 1.7 1.8 2.1 2.8 3.7 

W/E-facing incline N 0.9 1.8 0.6 0.5 0.4 0.4 0.3 0.4 0.4 0.6 0.7 0.9 

W/E-facing incline S 1.7 1.5 1.0 0.7 0.7 0.7 0.8 0.9 0.9 1.1 1.4 1.9 

valley N 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 

valley S 1.8 1.6 1.1 1.0 1.0 0.7 0.9 1.0 1.0 1.2 1.6 2.1 

*S-facing incline. For southern hemisphere: N-facing incline! 

Zone: N: Regions north of 45°N or south of 45°S A: General S: Regions south of 45°N and 
north of 45°S  

Feature: Depression: Small and medium depressions with formation of cold hollows, particularly in winter, or 
strongly shaded. Mainly confined to mountainous regions.  
Cold hollow: Includes the extensive cold hollows of central Alpine valleys such as in upper Engadine 
in Switzerland.  
Lake: Vicinity of sea or larger lakes (> 100 km2). Site not more than 1 km from the shore.  
City: Applicable to centers of larger cities with over 100,000 inhabitants.  
(See also Fig. 2.2.1 and Tab. 2.2.1) 

Tab. 7.2.3: Monthly correction factors for wind speed in m/s depending on terrain. Simplified WASP 
model (Risoe National Laboratory, 1990). 

Terrain  Correction factor [m/s] 
(applicable to all 
months of year) 

sheltered terrain (cities) -1.0 

open 0.0 

sea/lake 1.0 

Summits (hills and ridges) 3.0 
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7.2.2 Satellite data 

The ground data is supplemented with satellite data to increase the quality, especially in regions with 
poor ground station data coverage. 

In version 8.0 satellite data is used for radiation interpolation in all areas (Fig. 3.1.1). The method used 
for processing the satellite images is an approximation of methods like Heliosat II (Lefèvre et al., 
2002): The hourly pictures of the visible channel of the 5 geostationary satellites have been used 
(period 2008–2020 for MSG, 2019-2020 for Himawari and 2018-19 for GOES-E and Indoex). The 
satellite pictures are processed to daily means of global radiation and summed up to monthly values. 

Correction (merging of ground and satellite data) in four steps: 

1. Adaptation (satellite to ground) with linear regression (if the regression is significant and the 
offset is small) per geostationary satellite 

2. Regional adaptation interpolation at 4 x 4° grid per satellite 
3. Correction of average radiation levels per geostationary satellites based on overlapping 

regions (truth: MSG area) 
4. Fusion of satellites with smoothing the overlapping parts (10°) 

The maps based on the four steps stored in the Meteonorm software.  

Local adaptation to ground measurements for the points of interpolation is additionally done within the 
software (on the fly) to avoid steps with growing distances to the ground sites. This step is described 
in the next chapter. 

 

7.2.3 Merging of ground and satellite data 

Where no radiation measurement is available nearer than 200 km (Europe: 50 km) from the selected 
location, satellite information is used. If the nearest site is more than 30 km (Europe: 10 km) away, a 
mixture of ground and satellite information is used. 

These monthly values are interpolated with mean ground measurements (mainly GEBA data). The 
difference between the ground measurements and satellite information is interpolated spatially with 
the inverse distance method (see Chapter 7.2.1). This provides a result which includes the values at 
the ground stations and the variation of the satellite pictures. 

7.2.4 Quality of the interpolation on yearly means 

Following interpolation, the accuracy of the results was found by cross correlation method to be as 
follows: Interpolation of global radiation: mean biased error (mbe): 0 W/m2 (0 %); root mean square 
error (rmse): 12 W/m2 (6.8%) (Tab. 7.2.4). For temperature interpolation, the mbe was 0.0 °C and the 
rmse 1.3 °C. Using the nearest neighbor interpolation method as a benchmark, the rmse for global 
radiation would be 14% and that for temperature 3.4 °C. 

Tab. 7.2.4: Quality of the ground bases interpolation of yearly values. 
 

 Gh  Ta Td FF RR Rd Sd 

 [%] [°C] [°C] [m/s] [%] [d] [%] 

Time period All 2000
-19 

2000
-19 

2000
-19 

2001
-19 

2001
-19 

1961
-90 

Europe 5.9 1.0 0.7 1.2 22 16 9.6 

Western Europe 5.5 1.0 0.7 1.1 22 15 10.5 

Switzerland 6.7 0.9 0.5 1.1 18 17 10.3 

Germany 4.1 1.0 0.5 0.8 19 9 6.6 

France 3.8 0.7 0.5 1.2 22 17 7.4 

Asia 7.5 1.5 1.4 0.9 25 19 7.6 

Japan 5.6 1.0 0.5 0.9 16 17 7.6 

Africa 7.4 1.8 1.7 1.0 39 31 7.8 
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North America 4.6 1.0 1.0 0.8 25 21 8.4 

South America  10.3 1.7 1.1 1.0 36 37 16.0 

Australia/Ocean. 5.9 1.2 1.3 1.4 37 25 16.0 

World 6.8 1.3 1.1 1.0 26 23 9.1 

 

7.2.5 Conclusions 

With the Meteonorm Version 8 database, it is possible to simulate solar energy systems in all parts of 
the world on a consistent basis. The interpolation errors are mostly within the variations of climate from 
one year to the next.  

The quality of the interpolation of all parameters was improved with the additional satellite data and 
quality checks of version 8. A difference map of global horizontal irradiation radiation between 
Meteonorm Versions 7.3.2 and 8 is shown in Figure 7.2.1. 

 
Fig. 7.2.1: Yearly sum of Global Horizontal Irradiation (GHI): Difference between Meteonorm 8 and 
7.3.2 
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7.3 Solar trajectory 
In solar energy applications, the knowledge of the geometrical parameters of the solar trajectory is 
necessary. Since version 5.0 (2003) a set of algorithms based on the European Solar Radiation Atlas 
ESRA (2000) is used. In the following formulae, angles are given in radians [rad] when not otherwise 
stated. 

Viewed from a fixed point on the earth's surface, the solar position is defined by two angles (Figs. 
7.3.1 and 7.3.2): 

1. Solar altitude hs: Angle between horizontal plane and line joining the centers of the earth and the 
sun (solar elevation). 

2. Solar azimuth s: Angle between the projection of the straight line joining the centers of the earth 

and the sun on the horizontal plane and due south. s > 0 in positive solar direction, s < 0 in 
negative solar direction. 

zenith

sun

N

ES

W

hs

s

P

 

Fig. 7.3.1: Solar position viewed from a point P on the earth's surface 

Y

X



s



sun

zenith

z

Z: axis of rotation

P

earth

P: point on earth‘s surface

 : Latitude

z  zenith angle - hs

 declination

s : hourly angle

 

Fig. 7.3.2: Solar position (declination, zenith angle and hourly angle) 

The two angles may be expressed as a function of latitude (), solar declination () and hourly angle 

(s) (7.3.1 to 7.3.4). 
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The declination () is the angle between the equatorial plane and the straight line joining the centers of 
the earth and the sun. It is determined by the laws governing the solar trajectory, and can be 
expressed as given in Eqn. 7.3.3a and b (Bourges, 1985). 
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  : declination [rad] dy : day of year  

y: year λ :  longitude 
INT stands for integer part of the argument and y for year and dy for day number of the year. 

For the equinox, the declination is zero, for the summer solstice +23.4° and for the winter 
solstice - 23.4°. It is this variation which is responsible for the seasons of the year. 

The hourly angle (s) is also known as solar time (ST) in radians (7.3.4). 

𝜔𝑠 = (𝑆𝑇 − 12)
𝜋

12
 (7.3.4) 

The astronomical day begins and ends when the center of the sun's disk is precisely on the (flat) 

horizon. The calculation of the angles of sunrise and sunset (ss) is made using Eqn. 7.3.5, obtained 
by solving Eqn. 7.3.1 with hs = 0. 

𝜔𝑠𝑠 = 𝑎𝑟𝑐 𝑐𝑜𝑠[− tan 𝛼 ∙ tan 𝛿] (7.3.5) 

 

As an added feature in Meteonorm Version 6.0 the radiation is also modeled for those hours, when the 
elevation is positive at the beginning or the end of the hourly time period, but not at the centre. Either 
the begin or the end (the one with positive elevation) is taken as solar elevation for those hours. For 
those hours the part of the time, when the sun is above the astronomic horizon is calculated. The 
generated radiation values are multiplied with this part. Generally the radiation parameters are very 
small for those hours. 
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Dimensionless quantities 

For many chain links the clearness index is used. This index is defined by 
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Optical air mass  

In calculating the radiation on the earth's surface, the optical mass m is required. This is defined as the 
relative thickness of the air path traversed by a sun's ray when it reaches the earth's surface. For 
vertical impingement of the sunrays at sea level, m assumes the value 1. The value of the optical air 
mass declines with increasing altitude, and increases with declining solar altitude (Eqn. 7.3.7) 

The solar altitude angle is first corrected for refraction. 
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z: Height above sea level [m] hs: Solar altitude angle [rad]  

 



Theory  Meteonorm 9 

7.4 Extraterrestrial solar radiation 
Outside the earth's atmosphere, the solar radiation intensity is 1'366 W/m2 (I0) (7.4.1). A surface 
exposed to the sun can only receive this value if it is placed normal to the direction of radiation. Any 
deviation from this direction leads to a reduction of incident radiation. In the case of a surface lying 
outside the earth's atmosphere that is parallel to the horizontal plane, the radiation is described as 
extraterrestrial horizontal solar radiation (G0). This radiation corresponds to the maximum possible 
radiation which would occur at the earth's surface if it were unhindered by the atmosphere and the 
horizon. 

I0

sun earth

equator

hs

atmosphere

Go

Gh max



 

Fig. 7.4.1: Extraterrestrial solar radiation (G0) and maximum radiation for clear sky (Gh max). 

Using the equation for radiation outside the earth's atmosphere and for the solar angle (hs) (7.3.1), the 
extraterrestrial horizontal solar radiation can be calculated (7.4.1) (Sfeir and Guarracino, 1981). 
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where  is the correction to actual solar distance at any specific time in the year. 

dy : day of year hs : Solar altitude angle 
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7.5 Clear sky radiation 
The maximum radiation is defined as the radiation occurring on days with a clear, cloudless sky. Not 
only the global but also the direct and diffuse radiations are of interest. For a cloudless sky, the global 
radiation takes maximum values. The maximum global radiation calculated here corresponds to the 
greatest possible value of global radiation per hour at the specified altitude. For a restricted period, the 
global radiation can attain very high values even with a cloudy sky. This occurs when sunlight, having 
penetrated through intensively reflecting clouds, impinges directly on the earth's surface. The 
maximum global radiation is strongly altitude dependent, and increases with increasing height above 
sea level. At the upper edge of the atmosphere, it takes the value of the extraterrestrial global 
radiation. 

Since version 5.0 of Meteonorm, a new set for clear sky radiation is used. The European Union FP5 

framework project SoDa studies (Remund and Page, 2002) showed that the use of a slightly 
enhanced ESRA clear sky irradiance model (Rigollier et al., 2000) delivers best results. The following 
chapters are a direct result of these studies. 

7.5.1 Underlying basic concepts in the SoDa/ESRA 
clear sky model 

The clarity of the sky above any site has an important impact on the intensity of both the beam irradi-
ance and the amount of scattered diffuse radiation under cloudless sky conditions. A capacity to 
address these issues is critical in achieving sound irradiation estimates.  

Energy is lost from the solar beam by three routes: 

i) molecular scattering by the gases in the atmosphere. 

ii) spectral absorption, for example by gaseous water vapour, primarily located in the 
lower atmosphere, and by ozone, which is located primarily in the stratosphere, and 
also by the permanent atmospheric gases like carbon dioxide. 

iii) scattering and absorption due to natural aerosols and man made aerosols in the 
atmosphere.  

The elevation of the site above sea level reduces the effective atmospheric path length and has to be 
taken into account. The amount of aerosol present in the atmosphere and the amount of water vapour 
present typically decrease exponentially with increases in solar altitude. The modeling process has to 
allow for this. 

The detailed assessment of these impacts is complex. There are advantages for practical users to be 
able to express the impacts of various factors, like variations atmospheric water vapour contents and 
aerosols, in a single easily comprehensible index. The ESRA/SoDa clear sky resource is based on the 
use of the concept of the Linke turbidity factor to achieve this simplicity. The guidance of Kasten 
(1996) was sought in the evolution of the precise formulation adopted. 

The Linke turbidity factor at height z metres above sea level, TL(z), was objectively defined by Kasten 
(1983) as: 

( ) ( )
( )z

z
zT

R

D
L 


+= 1  (7.5.1) 

where  R(z) is the relative optical thickness relating to Rayleigh scattering by the gaseous molecules 

in the atmosphere and ozone absorption and D(z) is the relative optical thickness associated with 
aerosol extinction and gaseous absorption other than ozone in the stratosphere. 

Further elaboration may be found in Terzenbach (1995). Note: in some recent scientific studies the 

gaseous absorption by the permanent gases in the atmosphere has been incorporated within  R(z). 
This produces a different definition of the Linke turbidity factor. 
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The actual path length through the atmosphere is described quantitatively using the concept of the 
relative optical air mass. The relative optical air mass at sea level can be calculated with Eqn. 7.3.7, 
by setting p=p0. 

R(z) and  D(z) are both functions of air mass because we are dealing with broadband radiation (as 
opposed to monochromatic radiation). 

The beam irradiance normal to the beam is given by: 

( ) ( ) zzTmIB RLn  −= exp0
  [W/m2] (7.5.2) 

In recent years several scientists have widened the concept of Rayleigh optical thickness to include 
absorption by a range of absorbing gases that occur naturally in the clean dry atmosphere like carbon 

dioxide, oxygen, and certain oxides of nitrogen. This process increases the value of  R(z), the denomi-
nator in Eqn. 7.5.1, and so yields lower values of the calculated turbidity factor from irradiance 
observations.  

The SoDa/ESRA policy in the face of these recent changes has been to retain a constant quantitative 
definition over historic time of the Linke turbidity factor. The compromise adopted takes advantage of 
recent improved knowledge about the effect of air mass on the Rayleigh optical thickness. The old 
Rayleigh optical thickness values are aligned with the new clear sky optical thickness values at air 
mass 2. This alignment is done by making a defined match at air mass 2 between the new algorithms 
and the old, which have been maintained as the reference for Linke turbidity factor inputs. This 
alignment yields an adjustment factor of 0.8662 needed to achieve this match which is included in 
Equation 7.5.3. 

The beam irradiance normal to the beam is calculated using the standardized original Kasten air mass 
2 Linke turbidity factor, as:  

( ) mTmIB RLn  −= 8622.0exp0
   [W/m2] (7.5.3) 

where TL is the air mass 2 Linke turbidity factor as defined by Kasten's formulation and m is the 
relative optical air mass corrected for station pressure. 

Kasten has provided the following guideline for typical values of TL in Europe (Tab. 7.5.1). 

Tab. 7.5.1: Typical values of TL in Europe. 
 

Very clean cold air TLK = 2  

Moist warm or stagnating air TLK = 4 to 6 

Clean warm air TLK = 3 

Polluted air  TLK > 6 

 

7.5.2 The estimation of clear sky radiation 

For equations of global clear sky radiation we refer to the publication of Rigollier et al. (2000), chapter 
about irradiance model. 

For diffuse clear sky radiation the following corrections are used: 

The formulation of the horizontal surface diffuse radiation irradiance algorithm in ESRA (2000) and 
Rigollier et al. (2000) did not make any allowance for variations in the site atmospheric pressure 
though such a correction was made in the associated beam estimates. Further investigation has 
shown the desirability of including the pressure correction in the ESRA diffuse algorithm.  

Setting (TL
*) = p/p0 TL, the ESRA diffuse irradiance estimation equations were rewritten as follows: 

( ) ( )*

0 Lrdsdc TTFID =    [W/m2] (7.5.4) 

Trd(TL*) is the diffuse transmittance function which represents the transmittance with the sun at the 
zenith, It is calculated using Eqn. 7.5.5. 

( ) ( )2*4*22* 10797.3100543.3105843.1 LLLrd TTTT ++−= −−−

 (7.5.5) 

Fd(s) is the diffuse solar elevation function which adjusts the diffuse zenith transmittance Trd(TL*) to 

the actual solar elevation angle s. It is calculated using Eqn. 7.5.6, where s is in radians. 
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( ) 2

210 sinsin sssd AAAyF  ++=  (7.5.6) 

The coefficients A0, A1 and A2 are calculated using Equations 7.5.7: 

( )
( )

( )2**
2

2**
1

2**
0

0085079.003231.033025.1

011161.0018945.004020.2

0031408.0061581.026463.0

LL

LL

LL

TTA

TTA

TTA

++−=

−+=

+−=

 (7.5.7) 

For regions below approximately 500 m, the changes due to the new formulation are small. In 
Switzerland the clear sky diffuse radiation at 1'000 m a.s.l. is lowered by 10 % and the global clear sky 
is lowered by about 2.5% by this change. At 2'500 m the clear sky diffuse is lowered by 30% and the 
global is lowered by about 3% (the diffuse part forms a smaller proportion of the clear sky global 
irradiation at higher site elevations). 

The outcome of the validation in Rigollier et al. (2000) is therefore not touched by the change, as only 
stations below 500m were used in the validation. 

 

7.5.3 Linke turbidity  

Linke turbidity (TL) is used for input of the ESRA clear sky model. For version 7.2 a new turbidity 
climatology has been included. It’s based on the database of Solar Consulting Services (Gueymard, 
2012) and includes ground and satellite measurements (MODIS and MISR) of the period 2000-2015. 

In opposition to the data used between version 6 and 7.1 no need for further reduction of TL data is 
needed.  

High turbidity values are reduced more than lower values. For mean conditions at mid latitudes and 
industrialized regions like Europe with Linke turbidity of about 5, the value is lowered by 20% to a 
value of 4. 

Additionally it was detected, that with varied turbidity values the observed distribution of clear sky 
conditions could be matched better. Also models producing beam radiation gave better results, when 
using varied turbidities. By default the daily Linke turbidity (TLd) values are varied stochastically 
(optionally it can set constant) (Eqn. 7.5.8). 

( ) ( )

( )

( )
( )

2.175.0

,0

1

25.0

7.0

1

5.02

1

1

1



=

−=

=

=

+−=

mdm

mm

dd

LTTLLT

Nr

LTLT

rdTLdTL











 (7.5.8) 

1
:  First order autocorrelation  

( )mTL : Standard deviation of y perturbations depending on monthly means of TL 

 : Standard deviation of the normally distributed random function; the constant has been 

 enhanced from 0.1 to 0.25 for version 7.2. 

r : Normally distributed random variable with expected value 0 and standard deviation  . 

World digital maps of the Linke turbidity factor have been prepared on a 0.5” grid as a basic resource 
(Fig. 7.5.1).  
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Fig. 7.5.1: Yearly long term mean of Linke turbidity factor (period 2000 – 2015). 

The given TL values are coupled to the mean altitude of the pixels. In the software, the TL values are 
adopted to the real altitude of the sites with the following equation: 

( ) ( ) ( )






 −=

6000
exp 12

21
zzzTzT LL  (7.5.9) 

 

7.5.4 Solis 2017 clear sky model 

With Meteonorm Version 7.3 optionally the clear sky model Solis 2017 (Ineichen, 2018) is available. 
This model is specially adapted to high turbidity locations. It delivers more realistic results for such 
areas as Sahel zone (and other areas with high values – see Fig. 7.5.1), where ESRA model tends to 
induce too high diffuse values. However, up to now the model hasn't been validated in the chain of 
algorithms of Meteonorm. 
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7.6 Generation of global radiation 
To meet today needs, monthly average data is no longer sufficient, and many design codes call for 
hourly or minute data. However, since the interpolation of hourly values at arbitrary locations is 
extremely time consuming (only feasible using satellite data), and necessitates extensive storage 
capacity, only interpolated monthly values at nodal points are stored. 

In order to generate hourly values at any desired location, stochastic models are used. The stochastic 
models generate intermediate data having the same statistical properties as the measured data, i.e. 
average value, variance, and characteristic sequence (autocorrelation). The generated data 
approximates the natural characteristics as far as possible. Recent research shows that data 
generated in this way can be used satisfactorily in place of long-term measured data (Gansler et al., 
1994). 

The following generation procedure is adopted. Starting with the monthly global radiation values, first 
the daily values, then the hourly and minute values are generated stochastically. Further characteristic 
values, e.g. temperature, humidity, wind, longwave radiation, are derived from these as required. 

7.6.1 Stochastic generation of global radiation 

7.6.1.1 Generation of daily values 

For generation of daily values a new model was introduced in version 5.0 as an outcome of the SoDa 
project. 

The model of Aguiar et al. (1988), used already in versions 2–4, provides the starting point for this 
methodology. It calculates daily values of Gd with monthly mean values of Gm as inputs. The following 
changes have been introduced: 

The original model gives one single distribution of daily clearness index KTd values for any one 
monthly mean value KTm. The model does not take into account any local factors like site altitude 
above sea level (higher maximum irradiation values at higher altitude) or different turbidity situations. 
There are also problems with the coupling to the clear sky model of ESRA when this original model is 
used in the SoDa chain of algorithms. The estimated clear sky values, using Chain 1, can be much 
higher or much lower than the maximum values predicted by the unmodified Aguiar. 

The whole system of the matrices was therefore changed from a clearness index basis to a clear sky 
clearness index basis. Formulated like this, the maximum value of KTd,c (=1) must correspond auto-
matically to the clear sky model predictions used. KTd,c is calculated as the ratio Gd/Gc,d. 

The mapped resource of monthly mean Linke turbidity factors (Fig. 7.5.1) is used to drive the clear sky 
model using algorithmic to obtain the required monthly mean daily values of Gc,d needed to calculate 
KTd,c in any selected month for any point. This change required the daily Markov transition matrices 
tables to be completely revised to match the new formulation. The new tables giving the revised 
distributions and their validation in application are discussed in the chapter Chapters 7.6.1.2 and 
7.6.1.3. 

Example: generation of a sequence for one month 

This Section is based on the description of the methodology by Aguiar et al. (1988). It gives an exam-
ple of how to use the Markov Transition Matrices (MTM) to calculate a daily sequence of clear sky 
daily clearness indices. 

Suppose that, for each month of the year, the location X has the following values of monthly clear sky 
clearness indices KTm,c: 
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 January February November December 

KTm,c 0.424 0.522 0.475 0.389 

 

In a first step the clear sky monthly mean KTm,c values have to be calculated from the monthly global 
radiation and monthly clear sky radiation. 

A simulation for the month of January would proceed as follows. 

1. The appropriate MTM is selected using the value of KTm,c for Jan.: since 0.40 < KTm,c ≤ 0.50 the 
appropriate matrix is Table 7.6.4. 

2. The daily KTd,c value corresponding to day 1 of the series to be generated is calculated by assum-
ing that KTm,c (Month 0) i.e. KTm,c(Dec.) = 0.389. 

3. Note that KTm,c(Month = 0) belongs to the interval 0.3–0.4, which is line 4 of the selected MTM.  
4. Using a random number generator with a uniform distribution between 0 and 1, suppose a number 

R = 0.350 is found. This is used to determine the next state of KTd,c. by summing the values of 
P41+P42+...+P4j (4th row, jth column of Table B5) until the sum is greater than R. This finds the state 
in which KTd,c. will be in the next day. In this case, the result is P41+P42+P43+P44 = 
0.020+0.111+0.175 +0.208 = 0.514. 

 
The first and simplest way to calculate the new value of KTd,c(1) consists of giving it the value of the 
intervals corresponding to the new state column j = 4, in this case 0.40 (j = 1 would mean 0.1, j = 2 
would mean 0.2, ...). Another slightly more complicated way, which is used here, depends on a linear 
interpolation within the interval. In this case, the procedure is best described in terms of the distribution 
function for state i: 

( ) ( )=
cdKT

cdcdcdi dKTKTPKTF
,

0

'

,

'

,,
 (7.6.1) 

which in this (discrete) case has a graphical form like the on shown in Figure 7.6.1. This Figure also 
shows how KTd,c is found at the intersection of the horizontal line at R with the linear interpolation 
within the appropriate interval of KTd,c. In the present example, the final result using this process is 
KTd,c(1) = 0.321. 

The second day of the sequence, KTd,c(2) is found by taking KTd,c(1) as the previous day's value and 
repeating steps (2) to (4). A series KTd,c(dy) with 31 values is thus obtained for January. Daily global 
radiation is calculated by multiplying KTd,c(dy) with the clear sky global radiation Gd(dy). 

The average value of this sequence may not be equal to the monthly mean global radiation in the 
starting data. The synthetic data generation process is repeated until a sequence is obtained that lies 
within the desired limits of accuracy. This limit is set in the SoDa procedures to 1%. 
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Fig. 7.6.1: Obtaining the daily clear sky clearness index using a random number R and interpolating 

in the accumulated probabilities of the transition supplied by the MTM library of the 
previous KTd,c(dy-1) value. 

7.6.1.2 New Markov transition matrices (MTM) 

The new Markov transition matrices (MTM) were calculated using a total of 121 stations, drawn from 
the USA (from San Juan PR to Barrow AK), Europe, North Africa and Saudi Arabia. These cover all 
major climate zones. The original Aguiar et al. version was made with data from 12 stations. 

The result is a 9x10x10 matrix. Values of 0.05 and 1 were used as the minimum and maximum values 
of daily clear sky clearness index. The classes of the monthly KTd,c were set from 0.1–0.2, 0.2–0.3, ..., 
0.9–1.0. No monthly values of KTd,c below 0.1 were found (this is the reason for the 9x10x10 matrix). A 
second change was made in accepting only daily values smaller than 102% of the estimated clear sky 
value. This is especially important for high latitude sites during spring and autumn, where the day 
length changes very much during each month.  

The issue, whether more parameters could enhance the quality of random generation, was explored. 
Different MTMs were calculated for continental and maritime climates, as well as for low solar and high 
solar elevations. As none of the additional parameters led to significantly better results, they were not 
used. The problem of too low daily clearness index was also examined and found not to be of great 
importance. Only an overall minimum KTd,c value of 0.05 was set. Tables 7.6.1 to 7.6.9 show the 
Markov transition matrices.  

For version 6 MTM’s for KT <= 0.20 have been changed in order to able to generate data for more 
diverse climates. As for the production of these tables not enough values have been available and 
therefore the distribution is not representive. The introduced values are grouped mainly around the 
diagonal line, which means, that the weather does not change much from day to day. 

Tab. 7.6.1: Markov transition matrix for 0.10 < KTm,c ≤ 0.20 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.500 0.280 0.150 0.050 0.020 0.000 0.000 0.000 0.000 0.000 
0.1-0.2 0.200 0.480 0.200 0.100 0.020 0.000 0.000 0.000 0.000 0.000 

0.2-0.3 0.050 0.200 0.480 0.200 0.050 0.020 0.000 0.000 0.000 0.000 
0.3-0.4 0.020 0.050 0.180 0.500 0.180 0.050 0.020 0.000 0.000 0.000 

0.4-0.5 0.000 0.020 0.050 0.180 0.500 0.180 0.050 0.020 0.000 0.000 
0.5-0.6 0.000 0.000 0.020 0.050 0.180 0.500 0.180 0.050 0.020 0.000 

0.6-0.7 0.000 0.000 0.000 0.000 0.050 0.200 0.300 0.200 0.000 0.250 
0.7-0.8 0.000 0.000 0.000 0.000 0.020 0.050 0.200 0.480 0.200 0.050 

0.8-0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.200 0.500 0.250 
0.9-1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.200 0.050 0.050 0.700 
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Tab. 7.6.2: Markov transition matrix for 0.20 < KTm,c ≤ 0.30 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.500 0.280 0.150 0.050 0.020 0.000 0.000 0.000 0.000 0.000 
0.1-0.2 0.200 0.480 0.200 0.100 0.020 0.000 0.000 0.000 0.000 0.000 

0.2-0.3 0.100 0.650 0.200 0.050 0.000 0.000 0.000 0.000 0.000 0.000 
0.3-0.4 0.000 0.250 0.000 0.050 0.300 0.050 0.000 0.000 0.050 0.300 

0.4-0.5 0.000 0.400 0.050 0.100 0.400 0.050 0.000 0.000 0.000 0.000 
0.5-0.6 0.000 0.000 0.000 0.000 0.250 0.500 0.250 0.000 0.000 0.000 

0.6-0.7 0.000 0.000 0.000 0.000 0.000 0.250 0.500 0.250 0.000 0.000 
0.7-0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.250 0.500 0.250 0.000 

0.8-0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.250 0.500 0.250 
0.9-1.0 0.000 0.000 0.000 0.000 0.000 0.700 0.050 0.000 0.000 0.250 

Tab. 7.6.3: Markov transition matrix for 0.30 < KTm,c ≤ 0.40 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.133 0.319 0.204 0.115 0.074 0.033 0.030 0.044 0.011 0.037 
0.1-0.2 0.081 0.303 0.232 0.127 0.088 0.060 0.029 0.031 0.018 0.033 

0.2-0.3 0.036 0.195 0.379 0.135 0.087 0.039 0.042 0.027 0.025 0.036 
0.3-0.4 0.032 0.190 0.205 0.189 0.119 0.069 0.059 0.038 0.045 0.054 

0.4-0.5 0.051 0.175 0.189 0.185 0.140 0.079 0.060 0.040 0.017 0.064 
0.5-0.6 0.042 0.213 0.243 0.126 0.117 0.090 0.045 0.036 0.021 0.069 

0.6-0.7 0.017 0.166 0.237 0.141 0.100 0.091 0.054 0.062 0.046 0.087 
0.7-0.8 0.038 0.171 0.190 0.133 0.095 0.090 0.057 0.062 0.043 0.119 

0.8-0.9 0.044 0.093 0.231 0.143 0.115 0.066 0.038 0.060 0.099 0.110 
0.9-1.0 0.029 0.131 0.163 0.127 0.062 0.092 0.065 0.072 0.078 0.180 

 

Tab. 7.6.4: Markov transition matrix for 0.40 < KTm,c ≤ 0.50 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.116 0.223 0.196 0.129 0.093 0.077 0.054 0.044 0.032 0.037 
0.1-0.2 0.051 0.228 0.199 0.143 0.101 0.083 0.065 0.052 0.035 0.043 

0.2-0.3 0.028 0.146 0.244 0.156 0.120 0.092 0.069 0.053 0.040 0.052 
0.3-0.4 0.020 0.111 0.175 0.208 0.146 0.104 0.074 0.067 0.044 0.052 

0.4-0.5 0.017 0.115 0.161 0.177 0.155 0.102 0.085 0.067 0.054 0.068 
0.5-0.6 0.018 0.114 0.147 0.156 0.142 0.123 0.088 0.075 0.060 0.077 

0.6-0.7 0.019 0.116 0.152 0.153 0.133 0.100 0.090 0.078 0.061 0.098 
0.7-0.8 0.022 0.105 0.145 0.134 0.112 0.109 0.103 0.085 0.077 0.108 

0.8-0.9 0.016 0.100 0.119 0.120 0.100 0.105 0.099 0.096 0.120 0.126 
0.9-1.0 0.012 0.081 0.109 0.115 0.101 0.082 0.075 0.091 0.107 0.226 

Tab. 7.6.5: Markov transition matrix for 0.50 < KTm,c ≤ 0.60 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.095 0.201 0.140 0.121 0.112 0.076 0.073 0.066 0.055 0.061 
0.1-0.2 0.029 0.176 0.158 0.133 0.121 0.096 0.078 0.079 0.067 0.063 

0.2-0.3 0.015 0.096 0.171 0.157 0.139 0.121 0.093 0.080 0.066 0.062 
0.3-0.4 0.008 0.055 0.103 0.199 0.186 0.130 0.108 0.085 0.063 0.063 

0.4-0.5 0.006 0.039 0.077 0.145 0.236 0.167 0.113 0.083 0.064 0.069 
0.5-0.6 0.006 0.044 0.080 0.128 0.192 0.166 0.123 0.100 0.081 0.080 

0.6-0.7 0.006 0.049 0.082 0.132 0.152 0.139 0.125 0.110 0.095 0.109 
0.7-0.8 0.007 0.047 0.086 0.113 0.138 0.125 0.114 0.124 0.112 0.134 

0.8-0.9 0.006 0.048 0.079 0.105 0.120 0.108 0.100 0.120 0.138 0.177 
0.9-1.0 0.005 0.033 0.062 0.085 0.102 0.086 0.088 0.103 0.144 0.291 

Tab. 7.6.6: Markov transition matrix for 0.60 < KTm,c ≤ 0.70 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.061 0.169 0.146 0.095 0.106 0.094 0.108 0.085 0.067 0.070 
0.1-0.2 0.023 0.113 0.130 0.114 0.107 0.111 0.102 0.108 0.100 0.092 

0.2-0.3 0.007 0.062 0.105 0.132 0.151 0.126 0.113 0.106 0.097 0.100 
0.3-0.4 0.004 0.026 0.063 0.150 0.189 0.147 0.118 0.108 0.097 0.099 

0.4-0.5 0.002 0.017 0.040 0.098 0.230 0.164 0.130 0.111 0.103 0.106 
0.5-0.6 0.002 0.016 0.040 0.084 0.162 0.179 0.149 0.129 0.119 0.120 

0.6-0.7 0.003 0.018 0.040 0.079 0.142 0.143 0.153 0.140 0.139 0.144 
0.7-0.8 0.002 0.017 0.041 0.079 0.126 0.120 0.135 0.151 0.162 0.167 

0.8-0.9 0.002 0.017 0.034 0.069 0.108 0.106 0.114 0.144 0.191 0.215 
0.9-1.0 0.001 0.012 0.023 0.050 0.083 0.079 0.088 0.118 0.185 0.362 
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Tab. 7.6.7: Markov transition matrix for 0.70 < KTm,c ≤ 0.80 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.049 0.091 0.112 0.070 0.098 0.077 0.105 0.119 0.112 0.168 
0.1-0.2 0.019 0.070 0.090 0.105 0.119 0.113 0.103 0.134 0.121 0.125 

0.2-0.3 0.005 0.028 0.074 0.114 0.130 0.123 0.113 0.118 0.145 0.151 
0.3-0.4 0.001 0.011 0.039 0.102 0.169 0.135 0.123 0.126 0.136 0.156 

0.4-0.5 0.001 0.007 0.021 0.062 0.175 0.143 0.132 0.137 0.157 0.167 
0.5-0.6 0.001 0.007 0.020 0.049 0.117 0.146 0.150 0.157 0.172 0.182 

0.6-0.7 0.000 0.005 0.015 0.047 0.097 0.122 0.151 0.169 0.197 0.197 
0.7-0.8 0.001 0.006 0.016 0.040 0.084 0.098 0.130 0.179 0.224 0.223 

0.8-0.9 0.001 0.005 0.011 0.034 0.067 0.079 0.107 0.161 0.262 0.275 
0.9-1.0 0.000 0.003 0.007 0.022 0.045 0.055 0.074 0.112 0.222 0.459 

Tab. 7.6.8: Markov transition matrix for 0.80 < KTm,c ≤ 0.90 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.000 0.000 0.077 0.077 0.154 0.077 0.154 0.154 0.077 0.231 
0.1-0.2 0.000 0.043 0.061 0.070 0.061 0.087 0.087 0.217 0.148 0.226 

0.2-0.3 0.000 0.017 0.042 0.073 0.095 0.112 0.120 0.137 0.212 0.193 
0.3-0.4 0.001 0.003 0.015 0.055 0.106 0.091 0.120 0.139 0.219 0.250 

0.4-0.5 0.000 0.002 0.009 0.035 0.097 0.113 0.123 0.155 0.209 0.258 
0.5-0.6 0.000 0.002 0.007 0.028 0.063 0.089 0.123 0.157 0.235 0.295 

0.6-0.7 0.000 0.002 0.005 0.020 0.054 0.069 0.114 0.170 0.260 0.307 
0.7-0.8 0.000 0.001 0.004 0.015 0.043 0.058 0.097 0.174 0.288 0.320 

0.8-0.9 0.000 0.001 0.002 0.011 0.027 0.039 0.071 0.139 0.319 0.390 
0.9-1.0 0.000 0.001 0.001 0.005 0.015 0.024 0.043 0.086 0.225 0.600 

Tab. 7.6.9: Markov transition matrix for 0.90 < KTd,c ≤ 1.00 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.500 0.250 0.200 0.050 0.000 0.000 0.000 0.000 0.000 0.000 
0.1-0.2 0.200 0.500 0.200 0.050 0.050 0.000 0.000 0.000 0.000 0.000 

0.2-0.3 0.000 0.000 0.250 0.000 0.000 0.000 0.250 0.250 0.000 0.250 
0.3-0.4 0.000 0.000 0.000 0.000 0.048 0.000 0.143 0.095 0.190 0.524 

0.4-0.5 0.000 0.000 0.014 0.000 0.027 0.041 0.041 0.233 0.192 0.452 
0.5-0.6 0.000 0.000 0.000 0.008 0.039 0.031 0.078 0.093 0.326 0.425 

0.6-0.7 0.000 0.000 0.000 0.006 0.019 0.019 0.067 0.102 0.254 0.533 
0.7-0.8 0.000 0.000 0.000 0.005 0.012 0.024 0.041 0.106 0.252 0.560 

0.8-0.9 0.000 0.000 0.000 0.001 0.006 0.012 0.031 0.078 0.283 0.589 
0.9-1.0 0.000 0.000 0.000 0.001 0.002 0.004 0.012 0.029 0.134 0.818 

 

7.6.1.3 Validation 

The calculated mean values are adapted to the measured, so there is no difference at this level. The 
distribution has been tested at 5 stations of the Baseline Surface Radiation Network (BSRN) (WRCP 
2001) (Table 7.6.10) with Kolmogorov-Smirnov (KS) test (Massey 1951). 

The interval distance p is defined as 

100,minmax =
−

= m
m

xx
p

 

(7.6.2) 

where xmin and xmax are the extreme values of the independent variable. Then, the distances 
between the cumulative distribution function are defined, for each interval, as 

( ) ( ) ( ) npxpnxxxRxFD iiin +++−= minmin ,1,max  (7.6.3) 

If at any of the intervals considered, this distance as given in equation (Eqn. 7.6.3) is above a critical 
value Vc (which depends on the population size N) the null hypothesis that the sets are statistically the 
same must be rejected. The critical value is calculated for 99% level of confidence (Eqn. 7.6.4) 

35,
63.1

= N
N

Vc

 

(7.6.4) 

A special test (KSI over) (Espinar et al., 2009) was used to estimate the proportion of the distribution, 
where the critical value is overshot: 
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The KSI over % parameters are then calculated as the trapezoidal integral of that auxiliary vector and 
its corresponding normalization to the critical area: 

100
  

over% =


criticala

dxaux
KSI

 

(7.6.6) 

where acritical is calculated as 

( )minmax xxVa ccritical −=  (7.6.7) 

 

Generally a good agreement is achieved. At 4 of the 5 sites the distributions are statistically the same 
(Table 7.6.10). Figure 7.6.2 shows a typical cumulative distribution function for Camborne (GBR).  

Tab. 7.6.10: Kolmogorov-Smirnov (KSI over %) test for daily global radiation and clearness index. 

Site Year 
Gh day 
KSI over % 

Kt day 
KSI over % 

Payerne (CHE) 2005 0.0% 0.0% 

Camborne (GBR) 2005 0.0% 0.0% 

Goodwin Creek (MS, USA) 2005 0.0% 1.4% 

Alice Springs (AUS) 2005 0.0% 0.0% 

Ilorin (NGR) 1997 7.9% 3.8% 

 

 

Fig. 7.6.2:  Cumulative distribution functions of daily values of global irradiance for Camborne (GBR). 
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7.6.1.4 Generation of hourly values from daily values 

The generation of hourly values is based on the model of Aguiar and Collares-Pereira (1992) (TAG-
model: Time dependent, Autoregressive, Gaussian model). This model consists of two parts: the first 
part calculates an average daily profile (Eqn. 7.6.8); the second part simulates the intermittent hourly 
variations by superimposing an autoregressive procedure of the first order (AR(1)-procedure) (Box et 
al., 1994) (Eqn. 7.6.10). 

( ) ( ) ( )hyhkhk
Mtt +=  (7.6.8) 

( )hkt : hourly clearness index  

( )hk
Mt : hourly clearness index of the average daily profile  

( )y h : first order autoregressive function  

h : hour 

Average daily profile 

The proposed model is based on the clear sky daily profile: 

dc

c
d

Gh

Gh
GhGh

,

=  (7.6.9) 

where Ghd is the daily global horizontal irradiance, Ghc the clear sky hourly global irradiance, Ghc,d the 
daily clear sky global irradiance. Other authors like Grüter et al. (1986) have used this approach as 
well. Clearness index ktM is calculated with Eqn. 7.3.6. Fig. 7.6.3 shows typical forms of the profiles. 

 
Fig. 7.6.3: Mean daily profiles of KTh for daily KTd values of 0.6 at San Juan PR. 

At noon all lines are very close. At low solar altitude the measured values are lower than the modelled 
ones; the new model is in between the measurements and the values of the model used in ESRA. 
Further, significantly higher KTh values are measured and calculated for very low solar altitudes. The 
model quite often yields – as do the measured values – higher KTh values for the first and the last hour 
of the day. This is due to the one dimensional concept of the clearness index, where, as in nature, the 
radiation – particularly at low solar elevation – is influenced by the three dimensional form of the 
atmosphere. To avoid unreasonable values, the KTh values are limited to values of 0.8 for solar 
elevation below 10°. 

 

Hourly variations 

The amplitude of the daily profile and the standard deviation of the perturbations are dependent on the 
daily Kt value and the solar altitude. The first order autocorrelation depends on the Kt value, i.e. it is 
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smaller for high and low values of Kt than for central values. The standard deviation of two adjacent 
hourly values is far greater for central Kt values than for extreme values (Eqn. 7.6.10). Owing to this, 
the daily profiles at small daily average radiation are comparatively flat, for central values highly 
intermittent, and for large values flat again. 

The model is site independent. Model definition and validation were performed using data from 
Belgium, Germany, Switzerland, United Kingdom, Australia and USA. The autoregressive function y(h) 
is determined as follows: 

( ) ( )

( ) ( ) 
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 (7.6.10) 

 

1
:  First order autocorrelation  

( )tK : Standard deviation of y perturbations  

 : Standard deviation of the normally distributed random function   

r : Normally distributed random variable with expected value 0 and standard deviation s'  

Limiting KTh values are set for clear sky radiation, where an overshoot of 10% is allowed. There is also 
the condition that only positive values can occur. The application of limiting values does, however, 
alter the AR(1) procedure, since the hourly average values of the perturbations are then no longer 
normally distributed. The result is a reduction of the first order auto-correlation, i.e. the generated data 
do not display the auto-correlation values defined by the model. This became apparent during valida-
tion of the TAG model. A decision was made to modify the auto-correlation function.  

In Version 6.0 new limiting conditions have been introduced in order to lower this effect. Instead of 
capping the values outside the limits, the y values have been stretched to the allowed minimum and 
maximum values.  

It is essential that the auto-correlation and the standard deviation be both correctly modelled. When 
using the Perez (1991) model to calculate diffuse radiation from the (generated) global radiation, the 
model uses a time series of Gh (3 successive hourly values). The problem of the non-Gaussian 
distribution of the intermittent hourly values was accounted for in Graham and Holland's (1990) model 
using a function that maps the Gaussian distribution to a beta distribution. A simpler procedure was 
chosen in the present model. The distortion of the first order correlation is corrected using a 
multiplication factor, k (Eqn. 7.6.11). In this procedure, the value of the standard deviation, which is 
well reproduced by the model, is retained. Thus, in calculating the standard deviation, the uncorrected 
first order auto-correlation value must be used. The effect of including the factor k would be to 

increase the standard deviation. Since, however, 1 is reduced again during data generation. The 
standard deviation defined by the model can be used.  

( ) ( )

.02= :factor  correction

11

k

rhykhy +−= 
 (7.6.11) 

 

The autocorrelation function has been adopted to 5 BSRN sites in the USA (Fig. 7.6.4). This subset 
was chosen, as it showed the best results (for all test sites). The standard deviation model has been 
modeled by hand. Adopted models showed less good results. 
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Fig. 7.6.4: Left: First order autocorrelation as a function of daily Kt value adopted for five BSRN 
stations in the USA. Right: Modeled standard deviation function. 

The TAG model permits small discrepancies between the daily and monthly average value of the 
generated values and the given values. The generated values are modified accordingly to ensure that 
the average values are always equal (as would be expected). If the daily or the monthly average of the 
generated data differs from the original value by less than 5%, the generated data are multiplied by a 
normalisation factor, otherwise the hourly values are regenerated using a new run. The procedure 
causes no appreciable distortion of the data distribution. 

During validation it became clear, that the generation process is clearly linked to the diffuse generation 
process. Changing this model, also the diffuse generation is changed. 

 

Validation 

The calculated mean values are adapted to the measured, so there is no difference at this level. The 
distribution has been tested at 5 BSRN sites (Tab. 7.6.12) with Kolmogorov-Smirnov (KS) test: 
Generally a good agreement is achieved. Nevertheless at all sites there are areas, where the critical 
value is overshot (Tab. 7.6.11). Most of the sites show biggest differences at 50-300 W/m2. Figure 
7.6.5 shows a typical cumulative distribution function for Camborne (GBR). Figure 7.6.6 shows the 
histograms of the same site. 

Tab. 7.6.11: Kolmogorov-Smirnov test (KSI over %) for hourly global radiation and clearness index. 
 

Site Gh 
KSI over 
% 

Kt 
KSI over 
% 

Payerne (CHE) 37.9% 0.9% 

Camborne (GBR) 3.6% 3.2% 

Goodwin Creek (MS, USA) 14.3% 2.8 

Alice Springs (AUS) 14.2% 2.2% 

Ilorin (NGR) 19.5% 0.2% 
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Fig. 7.6.5: Cumulative distribution functions of hourly values of global irradiance for Camborne 
(GBR). 

 

Fig. 7.6.6.  Histograms of hourly global irradiance for Camborne (GBR) depending on the daily 
clearness index (Kt). Measured values: full line, generated: dotted line 

The autocorrelation was examined for 17 sites (Tab. 7.6.12). The first autocorrelation value (ac(1) – 

which is the measured equivalent to 1 in Eqn. 7.6.13) and the standard deviation (sd – which is the 

measured equivalent of  in Eqn. 7.6.13) depending on the daily clearness index (Kt) were compared 
graphically (Fig. 7.6.7). The autocorrelation ac(1) is underestimated on average by 14%, the standard 
deviation (sd) is underestimated on average by 23% (Tab. 7.6.13). Tests with enhanced values 
showed better results in this test, but did lead to much less accurate beam and diffuse separation. 
This was the reason to leave the values at this level. 
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Fig. 7.6.7: Comparison of measured values (full line) and generated (dotted line) autocorrelation 
(ac(1)) and standard deviation sd at Cambourne (GBR). 

Table 7.6.12: Measured autocorrelation (AC(1)) and standard deviation and factors of the generated 
values. 
 

Site AC(1) 
mes. 
[ ] 

AC(1) 
gen 
factor [%] 

Std dev. 
mes. 
[ ] 

Std dev. 
mes. 
factor [%] 

Payerne 0.590 78.8 0.174 68.0 

Alice Springs 0.473 71.5 0.121 105.6 

Camborne 0.476 93.3 0.108 77.9 

Bondville 0.561 74.0 0.144 78.8 

Goodwin Creek 0.538 84.4 0.127 90.3 

Penn State Univ. 0.489 86.3 0.128 89.3 

Desert Rock 0.599 52.2 0.158 73.1 

Sioux Falls 0.548 80.6 0.140 85.7 

Table Mountain 0.495 79.9 0.157 87.7 

Fort Peck 0.564 66.7 0.140 81.6 

Mean value  76.7  83.8 
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7.7 Radiation on inclined surfaces 
Radiation data on horizontal surfaces is seldom needed. A collector, the wall of a building, or a roof, 
for example, regards the sun from another "viewpoint". Thus methods are required by means of which 
the hourly values can be obtained by transforming given (generated) radiation data to an arbitrarily 
orientated surface. 

The calculation of radiation on an inclined surface using (generated) hourly values of global horizontal 
radiation is done in two steps: First the average hourly global horizontal radiation (Gh) values are 
resolved into direct and diffuse components (7.7.1).  

)sin(

G

snhh

hhh

hBDG

BD

+=

+=
 (7.7.1) 

where Bn = direct normal radiation (“beam”, “DNI”), Bh = direct horizontal radiation and  
Dh = diffuse radiation 

The separation is done using the model of Perez et al. (1991). With version 7 two additional models 
have been added. In a second step, the radiation on an inclined surface is calculated with the help of 
these components. For this, another model of Perez (1986) is used. The second model also includes 
the effect of raised skyline.  

7.7.1 Calculation of radiation components with 
given global horizontal radiation 

Two models are available for the separation of global radiation into beam and diffuse: 

• Perez model (1991)  

• Boland – Ridley - Lauret (BRL) model (Ridley et al., 2010) (added for version 7.0) 

7.7.1.1 Perez model 

The dynamic model of Perez et al. (1991), which transforms global hourly horizontal radiation values 
into hourly values of direct normal radiation (direct radiation on a surface normal to the radiation) is 
based on parameters defining sky conditions. The model requires input in the form of time series of 
global radiation values. The model can also be extended to include the dew point temperature. It’ used 
a the default model of Meteonorm. 

The model, in fact, is based on a variable selection of input parameters. The greater the number of 
available parameters, the better the approximation of direct normal radiation. The following input is 
required: 

• Global horizontal radiation, or alternatively, normalized clearness index kt', whereby for kt' a 
formula independent of the zenith angle is used (Perez et al. 1990b). 

• Zenith angle of the sun. 

• When time series of global radiation are available, a stability index kt' can be calculated giving 

the dynamics of the time series. ( )11 ''''5.0' −+ −+−= ititititt kkkkk  where points i and i + 1 

refer to the present, previous and subsequent hour. 

• When the dew point temperature is available, it can be used to provide an accurate estimate of 
water content (humidity) in the atmosphere which in turn influences the absorption and the 
production of aerosols. The humidity is estimated on the basis of dew point temperature by the 
method of Wright et al. (1989). 
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The present model was derived empirically from a large series of data for a range of climatic regions in 
Europe and America. Depending on the form of the input data, it utilizes two to four parameters. It 
consists in the main of look-up tables together with a simple mathematical section. 

Further information on the models and their mode of operation may be found in the conference 
proceedings of the International Solar Energy Society (Perez et al., 1991). 

7.7.1.2 Validation 

Beam radiation is tested in two steps. First the model was tested alone with measured hourly values of 
global radiation as input, and secondly within the combined model using generated hourly values.  

Test using measured hourly values: 

The tests were carried out for 4 BSRN weather stations. For Perez model the average mbe error was 
3 W/m2 (only daytime hours) (generated values slightly too high) and the rmse standard deviation  
86 W/m2 (Gh > 0). BRL model shows slightly bigger deviations with a mean mbe of 12 W/m2 and a 
mean rmse of 93 W/m2. 

Station Year mbe 
Perez 
[W/m2] 

mbe 
BRL 
[W/m2] 

rmse 
Perez 
[W/m2] 

rmse 
BRL 
[W/m2] 

Payerne  2005 4.8 2.3 78.5 73.3 

Camborne 2005 17.0 14.2 70.7 72.7 

Goodwin Creek 2005 -15.2 -6.0 85.4 102.6 

Desert Rock 2005 3.5 37.2 108.5 123.8 

 

Test using generated hourly values: 

The model performance has been tested at 18 high quality sites with multi year measurements by 
looking at the yearly means of generated beam irradiances (Tab. 7.7.1). The two available direct 
radiation models have been tested. The two models are similar. The results depend on the stations 
chosen.  

With the “Perez” model the calculated yearly means of beam radiation have a relative mean bias error 
(mbe) of -0.9 % and a root mean squared error (rmse) (definition e.g. in Argiriou, 1999) of 7.0%. The 
BRL model has an mbe of -2.1% and and RMSE of 6.6%. 

The shown accuracy seems higher compared to older examinations by using the measured monthly 
global radiation data as input (instead of mean values) and using only newer and high quality 
measurements. 

On a global scale, the error in calculated beam radiation does not show regional patterns. The error 
distribution shows a slight yearly pattern. In winter the rmse are registered somewhat bigger.  
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Tab. 7.7.1: Comparison between yearly means of measured and generated beam values.  
 

Station Years Meas. 
[kWh/m2] 

Difference 
Perez [%] 

Difference 
BRL [%] 

Payerne 1996-2010 1183 1.2% -1.5% 

Lindenberg 1995-2006 972 6.9% 1.3% 

Cabauw 2005-2015 915 6.1% 1.4% 

Tateno 2001-2015 1232 -13.4% -13.2% 

Carpentras 1997-2015 1839 -4.6% -7.6% 

Billings 1994-2011 1794 -6.7% -7.7% 

Chesapeake 2001-2015 1598 -10.3% -11.3% 

Alice Springs 1996-2015 2643 -7.3% -7.4% 

Kwajalein 1998-2015 1490 -10.3% -4.6% 

Toravere 2006-2015 1044 -0.7% -5.8% 

S. Martinho 2008-2014 1524 2.4% 3.1% 

Fort Peck 1999-2015 1676 12.2% 7.8% 

Goodwin Creek 1999-2015 1617 -4.7% -4.7% 

Table Mountain 1999-2015 1975 5.9% 7.5% 

Sioux Falls 1999-2015 1628 7.2% 1.8% 

Desert Rocks 1999-2015 2800 1.8% 2.1% 

Bondville 1999-2015 1481 2.6% 0.8% 

Penn State 1999-2015 1241 0.6% -0.4% 

Bias %   -0.9% -2.1% 

RMSE %   7.0% 6.6% 

 

 

Fig. 7.7.1:  DNI generated vs. measured (Perez model). 

The distributions of generated and measured beam radiation are similar, but do differ statistically. In 
Table 7.7.2 the KSI% test at 4 sites for hourly beam radiation are listed. The tests differ very much 
from one site to another. The reason for this behaviour is not known. BRL shows slightl better results 
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as Perez model show – but not for all sites. Figure 7.7.2 and 7.7.3 show the distributions for Payerne 
and Carpentras. 

Tab. 7.7.2: Kolmogorov-Smirnov test (KSI over %) for hourly beam radiation. 
 

Site Year KSI over  
DNI % 
Perez  

KSI over % 
DNI %  
BRL 

Payerne (CH) 2008 278% 106% 

Camborne (UK) 2005 400% 62% 

Billings (IL, USA) 2008 225% 151% 

Carpentras (FR) 2009 46% 308% 

 
 
 

 

Fig. 7.7.2:  Distribution (left) and cumulative distribution (right) of hourly beam irradiance for Payerne, 
CH. 

 

Fig. 7.7.3:  Distribution (left) and cumulative distribution (right) of hourly beam irradiance for 
Carpentras, FR. 
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7.7.2 Calculation of global and diffuse radiation on 
inclined surfaces 

In Meteonorm Version 6.0 four models for calculation of radiation on inclined planes are included. The 
Perez model (Perez et al. 1986) is still the default model. All models enable global and diffuse 
radiation to be calculated on an inclined surface using the two input values of global horizontal and 
diffuse horizontal radiation. In version 6.0 the following three hourly models and a new model based 
on minute time resolution have been added: 

• Hay’s model (1979) 

• Skartveit and Olset model (1986) 

• Gueymard’s model (1987) 

• minute time resolution model (Skartveit and Olseth, 1986) 

Perez model 

In this handbook only the default model of Perez is described in some details. For the three other 
models we refer to publications. By means of Eqn. 7.7.2, the diffuse radiation on an inclined surface is 
calculated from the two components diffuse celestial irradiance (Bk and Dk

c) and diffuse reflected 
irradiance (Gk

r). 

r

k

c

kkk DDBG ++=  (7.7.2) 

The diffuse reflected irradiance (Dk
r) is calculated with the following model: 
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where  is the surface inclination, rR the isotropic reflected view factor and  the surface albedo (see 
Chapter 7.7.2.1).  

The diffuse celestial radiation on an hourly basis may not be assumed to be isotropic. It is therefore 
further divided into the components circumsolar, isotropic and horizontal ribbon. The model governing 
the equation for diffuse celestial irradiance is (Eqn. 7.7.4): 
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 (7.7.4) 

where F1 and F2 are coefficients expressing the degree of circumsolar anisotropy and anisotropy at 
the horizon/zenith respectively, and a and b are as given below 

( ) ( )a Z= max  and  b = max0 0087,cos . ,cos  (7.7.5) 

where  is the incidence angle of the sun on the inclined surface and rD the isotropic diffuse view 
factor. rD and rR are related by the expression 

r  =  1 -  rR D  (7.7.6) 

The three components are calculated separately and then summed to provide the diffuse celestial 
irradiance. A detailed description of the Perez model for different values of F1 and F2 may be found in 
Perez et al. (1986, 1987 and 1990a). 
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7.7.2.1 Albedo and snow coverage 

With version 7 a new model based on snow coverage is introduced. Snow cover is simulated based 
on temperature, global radiation, wind speed and precipitation. For the snow melt potential we use 
(7.7.7): 
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 (7.7.7) 

 
The snow density is kept constant. Like this the snow depth is modeled only very roughly. 
If measured temperature, precipitation and dew point temperature is used, the generation shows 
accurate values: 
 
 
As snow cover varies very much from one stochastic generation to another, the software simulates 5 
different years and takes the year with the snow coverage, which lies nearest to the mean value. 
The uncertainty of the days with snow is 22 days / year (tested at approx. 280 sites in Europe). For 
regions with typically less than 50 days with snow, the uncertainty lies at 13 days. 
 
Albedo is calculated depending on the snow depth. At 0 cm albedo is 0.2 and at 5 cm 0.5. In-between 
the albedo is calculated linearly. 
The lowering of the albedo with duration since last snow fall is modeled with the following equation 

( )1.156 - hss 0.049-exp0.083- = +c  (7.7.8) 

hss = hours since last snow fall 
 
During snowfall the albedo is set to 0.73. After 3 days the albedo goes down to 0.42. 
 
If the albedo can’t be calculated with snow coverage (too low or missing precipitation values) albedo is 
calculated with the model (used in version 6) that gives albedo as a function of temperature.  

 

7.7.2.2 Validation of the slope irradiance model 

The generated diffuse radiation on inclined planes is calculated in two stages. The two Perez models 
were first tested alone with measured hourly values of global radiation as inputs. Secondly they were 
tested within the combined model, using generated hourly radiation values. 

Validation with measured hourly radiation was carried out for 2 sites in Switzerland for inclinations of 
33–45° with a more or less South orientation (typical for solar energy applications) and also for a West 
facing facade in Bavaria (typical exposure for overheating studies). 

Validation with generated hourly radiation was made at 18 sites throughout the world. 
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Tests using measured hourly values: 

Inclined surfaces: 

The tests were carried out for 2 sites in Switzerland with data of 1993 (Berne-Marzili, 46.95°N, 7.45°E, 
520 m, inclination 35°, azimuth: 37°E; Locarno-Magadino: 46.18°N, 8.85°E, 197 m, inclination: 35°S, 
azimuth: 15°W). The average mbe error in the hourly values was 5 W/m2 (over all hours) (generated 
values slightly too high) and the rmse standard deviation 33 W/m2 (Gh > 0). For monthly average 
values, the mbe was 3 W/m2 (5%) and the rmse 5 W/m2.  

Facades: 

The test was carried out at Holzkirchen (Bavaria; 11.71°E, 47.87°N, 680 m) for a West facade. The 
average mbe error in the hourly values was 3 W/m2 (over all hours) (generated values slightly too 
high) and the rmse standard deviation 51 W/m2 (Gh > 0). For monthly average values, the mbe was 3 
W/m2 (0%) and the rmse 8 W/m2 (13%). 

Tests using generated hourly values: 

The monthly and yearly means are examined. The tests were carried out for 14 sites in many different 
climate zones and different inclinations (18° to 90°) (PVPS 2007) (Tab. 7.7.3). Only measurements 
with pyranometers (for horizontal as well as inclined planes) have been used. 

Tab. 7.7.3:  12 Test sites for global radiation on inclined plane models 
 

Site Country Source Altitude Latitude Longitude Azimuth Inclination 

   [m] [°] [°] [°] [°] 

Locarno-
Magadino 

Switzerland PVPS 222 46.18 8.86 195 45 

Akamatsu Japan PVPS 200 35.05 135.48 158 27 

Gelsenkirchen Germany PVPS 35 51.50 6.39 180 30 

Mexicali Mexico PVPS 3 32.66 -115.46 180 18 

Cloppenburg Germany PVPS 40 52.85 8.03 180 32 

Varennes Canada PVPS 29 45.52 -73.22 180 45 

Burgdorf Switzerland HTI 530 47.02 7.62 170 28 

Huvudsta Sweden PVPS 50 59.20 18.00 162 80 

Bern-Marzili Switzerland PVPS 514 46.9446 7.4423 143 35 

Mt. Soleil Switzerland PVPS 1270 47.164 7.000 153 50 

Faro Portugal PVPS 20 37.00 -7.90 170 25 

Holzkirchen Germany HOKI 680 47.87 11.71 270 90 

 
The 4 different models did show similar results (Tab. 7.7.4). Due to uncertainties based on the 
measurements the differences are too small to rank the models seriously. Nevertheless for monthly 
values Perez model showed the best results, followed by Gueymard’s, Hay’s and Skartveit’s model. 
The average mbe error of Perez’ model for yearly values is 1 W/m2 and the rmse standard deviation 7 
W/m2 (4.6%). 

Tab. 7.7.4: Accuracy of monthly and yearly values of radiation on tilted planes 
 

 Perez Hay Gueymard Skartveit 

Monthly mbe [W/m2] 2.4 -1.6 -0.3 -2.8 

Monthly rmse [W/m2] 9.8 10.5 10.1 11.5 

Yearly mbe [W/m2] 1.3 -4.0 -2.4 -5.8 

Yearly rmse [W/m2] 7.0 8.1 7.5 9.5 

Yearly rmse [%] 4.6 5.3 4.9 6.2 

Yearly rmse 0-50° [W/m2] 4.6 5.3 4.9 6.2 

Yearly rmse > 50° [W/m2] 5.2 6.1 5.5 7.8 

 

At some sites the differences have a distinct yearly pattern with an overestimation in winter (e.g. 
Switzerland). In other regions these effects are not visible. 
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For inclination above 50° the calculation is partly worse. For facades Perez’ and Gueymard’s models 
are the best the best, followed by Hay’s and Skartveit’s model. 

7.7.3 Modification of radiation due to horizon 

The aim of the modification method described here is to calculate the radiation at sites with raised 
(distant) horizons. A number of assumptions which were used in the raised (local) skyline model are 
not valid in this case. In the following chapter, the modification procedure for the different radiation 
components is described. 

7.7.3.1 Modification of direct radiation by skyline profile 

It is clear that direct radiation is affected by a raised (i.e. non-horizontal) horizon in such a way that 
when the sun is occluded by the horizon, no direct radiation can impinge on the inclined surface. In 
other words, the surface in question receives less direct radiation than it would with a horizontal 
skyline. In calculating hourly values, a check has therefore to be made whether the sun is above or 
below the skyline. If occluded by the skyline, the direct radiation on the inclined surface is zero. 

The hourly direct radiation on an inclined surface (Bk) is set to zero under the following conditions: 

• When the sun has not yet risen or has already set (hs<0). 

• When the sun is behind the surface (cos()<0 ; where  = incident angle of radiation on inclined 
surface; Eqn. 7.7.5). 

• When the sun is behind the skyline (hs < skyline altitude). Thus a check has to made each hour 
based on azimuth and solar altitude to establish whether the skyline altitude is greater or smaller 
than the solar altitude. 

7.7.3.2 Modification of diffuse radiation by skyline profile 

The diffuse radiation components are processed as follows: 

• Circumsolar component: this is treated in the same way as direct radiation. 

• The horizontal ribbon: this part of the diffuse radiation remains unchanged, i.e. it retains its original 
value independently of skyline profile. This is assumed for the reason that the sky immediately 
above the horizon is often brighter than the rest of the sky. This applies not only in regions with 
practically level horizons but also in mountainous regions. In mountainous regions in summer, this 
is often caused by the bright convective clouds that tend to form above ridges and peaks. 

• Diffuse isotropic and reflected irradiance (Dk
r) are calculated as follows:  

If the skyline is not horizontal, a larger proportion of ground and smaller proportion of sky is visible 
to the surface. This implies that the view factors (rD, rR) must be modified when a raised skyline is 
present. The skyline profile is normally given as a closed polygon whose points are specified in 
terms of azimuth and altitude. The proportion of the sky which, despite the existence of a skyline 
profile is still seen by the inclined surface, may be calculated by numerical integration. From the 
isotropic diffuse view factor calculated in this way, the isotropic reflected view factor may be 
calculated as given in Eqn. 7.7.5. The diffuse radiation with skyline effect can be calculated using 
the new values of rR and rD in Eqn. 7.7.2 or 7.7.5. In Eqn. 7.7.2, the global horizontal radiation (Gh) 
must also be changed. This is done by calculating horizontal radiation with raised horizon (Gh

hor) 
for a horizontal surface.   
In case of far horizons (typically from mountains) the horizontal ribbon is kept (Eqn. 7.7.9): 
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7.7.4 Conclusions 

The validation procedure for the complete model shows that coupling the various models to provide 
hourly values produces satisfactory results. Thus the basic procedure for generating hourly values of 
meteorological data at any desired location has proved to be a valid approach. On average, the model 
overestimates yearly average global radiation values by 0 W/m2 by the default model. The rmse 
comes to 6 W/m2 (4%). 

The distributions of daily global irradiance values are similar to the measured at all test sites. For 
hourly values the discrepancies are bigger and for beam irradiance the distributions don’t pass the null 
hypothesis of KS test. Nevertheless the distributions are similar at most sites for the biggest part of 
possible values (especially for higher values above 500 W/m2). 

Although most of the models were checked independently, not all of them could be validated in depth. 
For example, those for removing and superimposing raised horizons could not be checked owing to a 
lack of data. 
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7.8 Minute time resolution radiation 
data 

7.8.1 Minute to minute generation model 

In version 6 the first minute to minute generation was introduced. This model was based on the TAG 
model of Aguiar and Collares-Pereira (1992), which is made for the generation of hourly values and is 
used also in Meteonorm. In version 7 an additional model based on Skartveit and Olseth (1991) was 
added. For version 7.2 two new models have been added: the model of Hofmann et al. (2014) and a 
new model based on time series (Remund, 2017). Validations showed that the TAG model has 
relative large deviations. This was the reason to exclude this model in the new version. 

7.8.1.1 Time series minute model 

The following sites (BSRN stations) have been used to adapt the new time series model for minute 
values (Tab. 7.8.1). 

Tab. 7.8.1:  Sites used to adapt the model (all BSRN sites) 

Name Country Period 

Alice Springs AUS 2010-2011 

Bermuda BER 2008-2009 

Billings USA 2008-2009 

Cabauw NLD 2010-2011 

Camborne GBR 2004-2005 

Carpentras FRA 2009-2010 

Cesapeak Light USA 2010-2011 

Florianopolis BRA 1997-1998 

Lauder NZL 2010-2011 

Lindenberg GER 2004-2005 

Momote PNG 2010-2011 

Payerne CHE 2008-2009 

Regina CAN 2010-2011 

Sede Boker ISR 2010-2011 

Tamanrasset ALG 2010-2011 

Tateno JPN 2010-2011 

Toravere EST 2010-2011 

 

One minute global radiation time series of two years of each station have been normalized by the 
clearsky radiation and saved divided into 3 wind speed classes, 10 cloud classes and 5 sunshine 
classes. 20 different time series have been saved. The time series are generated on the basis of 
hourly values by choosing stochastically one of the 20 stored curves depending on the weather 
conditions.  

 

7.8.1.2 Hofmann minute model 

The two-step algorithm (Hofmann et al., 2014) is capable of synthesizing one-minute global irradiance 
time series based on hourly averaged datasets. The algorithms initialized by deriving characteristic 
transition probability matrices (TPM) for different weather conditions (cloudless, broken clouds and 
overcast) from a large number of high resolution measurements. Once initialized, the algorithms 
location-independent and capable of synthesizing one-minute values based on hourly averaged global 
irradiance of any desired location. The one-minute time series are derived by discrete-time Markov 
chains based on a TPM that matches the weather condition of the input dataset. 
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7.8.1.3 Skartveit and Olseth minute model 

This model was made for 1 – 10 minute data generation and therefore could be used almost without 
any change. Only the time series generation had been changed. Instead of permuting the minute 
values until they correspond to the given autocorrelation value, the time series is modeled with a 
simple autoregressive model (AR1) and then mapped to the calculated distribution. 

 

7.8.1.4 Validation 

In Tables 7.8.3 – 4 measured and generated values (  KSI over) are compared. The distribution 
has been tested at 5 BSRN sites with Kolmogorov-Smirnov (KSI) test: 

Tab. 7.8.3:  Comparison between measured and generated clearness index (minute time 
resolution).  
 

Model measured S&O Hofmann Time series 

Site         

Payerne 0.232 0.797 0.137 0.665 0.193 0.823 0.142 0.826 

Camborne 0.234 0.771 0.136 0.660 0.210 0.826 0.144 0.837 

Billings 0.262 0.798 0.138 0.656 0.200 0.815 0.147 0.820 

Carpentras 0.244 0.793 0.142 0.635 0.210 0.808 0.140 0.821 

Mean 0.243 0.790 0.138 
(-43%) 

0.654 
(-17%) 

0.203 
(-16%) 

0.818 
(+4%) 

0.143 
(-41%) 

0.826 
(+5%) 

 

Tab. 7.8.4: Kolmogorov-Smirnov test (KSI over %) for one minute clear sky values. 
 

Site Year KSI over  
DNI % 
S&O  

KSI over % 
DNI %  
Hofmann 

KSI over  
DNI % 
Time 
series  

Payerne 2008 745 573 762 

Camborne 2005 1350 543 1140 

Billings 2008 1295 1339 1233 

Carpentras 2009 1764 1152 1656 

Mean  1289 902 1198 

 

Skartveit-Olseth minute model 

The standard deviation is clearly underestimated (by 43%) and first autocorrelation value (phi) is 
underestimated (-17%). KSI values are given slightly worse by this model compared to the two other. 

Hofmann 

On average the standard deviation is underestimated by 16% and phi is overestimated by 4%. That 
means, that variation is too low and the connection from minute to minute is slightly too high. Sigma 
isn’t overestimated at every place, whereas phi is underestimated everywhere. This model shows the 
lowest deviations. 

Time series 

On average the standard deviation is clearly underestimated by 41% and phi is overestimated by 5%.  

The distributions of generated and measured diffuse radiation are similar, but do differ statistically. In. 
Figure 7.8.1 – 2 the distributions and cumulative distributions at Billings and Payerne are shown.  
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Fig. 7.8.1:  Distribution of minute clearness index Left: Billings, right: Payerne. 

 

Fig. 7.8.2:  Cumulative distribution of minute clearness index Left: Billings, right: Payerne. 

The two peaks of the distribution are given with both models. However the peaks are partly 
underestimated – especially the high peak. All generation model show also a distinct peak at 0.1 (the 
reason for this couldn't be evaluated). 

Fig. 7.8.3 shows a time series of minute global and diffuse radiation at Billings and Payerne. All 3 
types of days are shown realistic (low radiation and high radiation levels with low variations as well as 
mid radiation level with high variations). Distributions are given better for the two more cloudy sites. 
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Fig. 7.8.3:  Time series of generated minute global radiation (Payerne) for three days (sunny, 
cloudy, scattered). 

 

The generated time series look reasonable. The distributions differ statistically, but are similar to 
measured ones. The generation process is able to produce distributions with two maxima. 
Nevertheless the generated distribution peaks are not that concise as the measured. 

Hofmann model shows the best results, followed by Time series and Skartveit-Olseth. 

 

 

7.8.2 Minute to minute direct radiation 

For radiation splitting the model of Perez et al. is (1991) used (the same model as used for hourly 
values with the same settings). A short validation at 18 BSRN showed the following results (Tab. 
7.8.4). 
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Tab. 7.8.4:  Validation of DNI generation at 18 BSRN sites (yearly values). 
 

Station Years Meas. DNI 
[kWh/m2] 

Difference 
S&O  

Difference 
Hofmann 

Difference 
Time series  

Payerne 1996-2010 1183 5.5% 7.6% 7.0% 

Lindenberg 1995-2006 972 13.8% 15.7% 14.6% 

Cabauw 2005-2015 915 13.0% 16.9% 14.1% 

Tateno 2001-2015 1232 -8.7% -5.8% -7.5% 

Carpentras 1997-2015 1839 -2.7% -4.6% -2.2% 

Billings 1994-2011 1794 -4.4% -4.9% -3.6% 

Chesapeake 2001-2015 1598 -6.4% -4.8% -5.8% 

Alice Springs 1996-2015 2643 -6.8% -9.3% -6.3% 

Kwajalein 1998-2015 1490 -5.5% -2.4% -3.1% 

Toravere 2006-2015 1044 4.4% 5.7% 5.7% 

S. Martinho 2008-2014 1524 6.0% 7.2% 7.2% 

Fort Peck 1999-2015 1676 13.6% 11.3% 14.3% 

Goodwin Creek 1999-2015 1617 -1.1% -1.5% -0.4% 

Table Mountain 1999-2015 1975 6.3% 3.2% 7.0% 

Sioux Falls 1999-2015 1628 9.5% 8.4% 10.2% 

Desert Rocks 1999-2015 2800 0.7% 0.7% 1.0% 

Bondville 1999-2015 1481 6.2% 6.9% 7.1% 

Penn State 1999-2015 1241 5.1% 7.3% 6.4% 

Bias %   1.8% 1.9% 2.7% 

RMSE %   7.0% 7.2% 7.2% 

 

All three models for minute values generation show very similar results. All have a low bias of 2% and 
a RMSE of approximately 7%. 

The distribution has been tested at 5 BSRN sites (Tab. 7.8.5) with Kolmogorov-Smirnov (KS) test:  

The distributions of generated and measured diffuse radiation are similar, but do differ statistically. In 
Table 7.8.5 the KSI over% test at 5 sites for hourly beam radiation are listed. On the average the 
distribution is given by the Hofmann best – followed by Time series model and S&O. In Figures 7.8.4 – 
5 the distributions and cumulative distributions at Carpentras and Camborne are shown. 

Tab. 7.8.5: Kolmogorov-Smirnov test (KSI over %) for minute beam radiation. 
 

Site Year KSI over  
DNI % 
S&O  

KSI over % 
DNI %  
Hofmann 

KSI over  
DNI %  
Time series  

Payerne  2008 821 1067 748 

Camborne 2005 2163 1317 1926 

Billings 2008 1939 623 1566 

Carpentras 2009 3270 1971 3102 

Mean  2048 1245 1836 
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Fig. 7.8.4:  Distribution of minute DNI clearness index Left: Carpentras, right: Camborne. 

 

Fig. 7.8.5:  Cumulative distribution of minute DNI clearness index Left: Carpentras, right: 
Camborne. 

 

 

7.8.3 Minute to minute global radiation on inclined 
planes 

For radiation on inclined planes the model of Skartveit and Olseth (1986) has been used. 

The following errors have been estimated at 17 sites throughout the world (Tab. 7.7.3). Most error 
values are smaller for the minute time resolution model than for default hourly model. 

Tab. 7.8.3:  Validation of model for minute global radiation on inclined planes. Comparison with 
Perez’ model used with hourly values. 

 

 Perez diffuse  
Perez inclined 
pl. 
hourly values 

Perez diffuse  
Skartveit 
inclined pl. 
minute values 

Monthly values mbe W/m2 3.8 0.2 

Monthly values rmse W/m2 9.9 9.5 

20-50° inclination rmse % 5.7 5.5 

80-90° inclination rmse % 9.8 9.1 
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8  Temperature and additional 
 parameters 

8.1 Temperature generation 

8.1.1 Introduction 

Any temperature values provided must conjoin with the global radiation time series, as daily 
temperature variations and solar radiation are inter-linked. For example, temperature is an important 
factor for simulation of solar energy systems (PV or thermal). The combination of solar radiation and 
temperature is critical in assessment of heating and cooling loads in buildings. The production of 
stochastically generated radiation data sets in isolation is not enough to help in such applications. 

From the interpolation and radiation generation procedure described above, hourly values of global 
radiation and monthly temperature required for temperature generation are now available at all points. 
Using these, hourly temperature values may be calculated as follows. 

In Meteonorm Versions 2–4 a model based on Scartezzini (1992) was used. In version 5.0 a 
completely new model was introduced. This model was developed in the framework of the EU IST 
project SoDa.  

In Version 6 the model was only slightly changed. The lowering of the temperature during the second 
half of the night time has been lowered to give more realistic values. Additionally a very similar 
generation process is introduced which results in more extreme distributions instead of mean 
distributions. 

The idea underlying the model is still based on the assumption that the amplitude of the temperature 
variation during daytime is approximately proportional to the amplitude of the daily global radiation 
profile. Thus the temperature profile is calculated by transforming the radiation profile. 

The model consists mainly of three parts:  

1. The stochastic generation of daily values, based on monthly temperature and daily radiation 
values and measured temperature distributions. 

2. The calculation of daily minimum and maximum temperatures, based on daily temperature 
values and daily and monthly radiation values. 

3. The generation of hourly values, based on daily minimum and maximum temperature values 
and hourly radiation values. 

8.1.2 Estimation of daily mean air temperatures 

The daily temperature prediction problem faced was addressed by creating a new worldwide database 
describing the statistical patterns of observed temperature data across the world in different months of 
the year. The detailed description of this temperature database and its development is provided in 
Chapter 8.1.2.3. It is described how this statistical temperature data resource accessible to the 
generation process was created for approximately 8'000 stations using the Globalsod data prepared 
by the US National Climatic Data Centre (NCDC) covering the period 1996–2005.  

A new and very fast generation process has been developed which draws on this database. It is 
described in Chapter 8.1.2.1. 
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8.1.2.1 Stochastic generation 

First, a auto-regressive AR(1) process is run with almost no boundary settings. Then the distribution is 
mapped to the measured or interpolated distribution (according to the input), drawing on the statistical 
temperature data base resource. 

Auto-regressive process 

The auto-regressive process for daily temperature is executed in the following way: 
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 (8.1.1) 

where, dT is the mean day to day difference, dTsd is the standard deviation of the day to day 
difference, dy is the day number in the month and r is a normally distributed random variable with 
expected value 0 and standard deviation 1.  

The temperature database is accessed to gain temperature data at the selected site using the nearest 
site interpolation procedure. This provides the statistical data needed to estimate dT' and dT'sd which 
are needed to carry out the auto-regressive operation described by Equation 8.1.1. The stochastically 
generated time series of hourly global solar radiation is of course produced first as it is the 
temperature driving agent in this procedure. Both difference values are varied according to the 
calculated daily insolation. If this is above 50% of the clear sky value, the measured "mostly clear sky" 
value is used, otherwise the "mostly overcast" value is used. In order to get a more realistic daily 
difference, the mean of the current and the previous day is taken for both values. 

This process is first run without any limitations on the minimum, maximum or mean values. After the 
generation of each month, a check is made whether the difference between the month's last daily 
value and the mean of the current and the following month is more than 4°C. If so, a correction term is 
introduced in order to keep the above difference below 4°C. The monthly mean of December is taken 
as the first value.  

Mapping the distribution 

After the generation and the application of the end of month correction, the daily values are mapped to 
the measured mean distribution, which is interpolated between the 7 stored quantiles (see “Input 
variables extracted …” below). This produces mean distributions and not extreme distributions. This 
means a statistically normal year is generated. Additionally, the yearly one day minimum is adopted as 
the January minimum in the northern hemisphere, or as the July minimum in the southern hemisphere 
and the yearly one day maximum is adopted as the summer (July/January) maximum in order to 
include mean one year extremes and not only monthly extremes.  

The 4 days minimum temperature is calculated for January (in the northern hemisphere) or for July (in 
the southern hemisphere). This value is introduced in order to reproduce minimum design 
temperatures, which are normally defined using a period of several days. 

If the generated 4-day minimum is more than 0.25°C higher than the measured value, the 4 days with 
the lowest minimum temperature are corrected to the measured value. If the difference is below 1°C, 
no changes to other days are made. If it is above 1°C the following 4 days or the 4 days before 
(dependent on the day of month) are raised in order not to change the monthly mean. 
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Input database 

The Globalsod dataset was used. It contains approximately 8'000 stations worldwide with daily values 
and is accessible by internet. The data was collected by the National Climatic Data Center (NCDC), 
USA from national weather services. 

Gathering data from each national meteorological service separately would have been both 
impractical and unaffordable to the SoDa and Meteonorm project and could be not have been finished 
in the short time needed.  

As for quality control, the data did undergo extensive automated control (by USAF, over 400 algo-
rithms) to correctly 'decode' as much of the synoptic data as possible, and to eliminate many of the 
random errors found in the original data. Then, these data were controlled further as the summary 
daily data were derived. However, a very small percentage of errors still remain in the summaries of 
daily data. 

The data of the 10 years 1996–2005 are used. Table 8.1.1 shows the number of stations in different 
continents. The worldwide total is 4'951 stations (not all of the 8’000 stations could be used), all with 
monthly data available. One drawback is that a 8 year period is climatologically rather short. But at 
least the data give a hint about the recent temperature distribution of a location and include any 
warming in the last decade of the century. The recent warming, widely interpreted as due to man 
induced climate change, will most probably continue.  

Tab. 8.1.1: Distribution of stations with temperature of the Globalsod database.  
 

Region Number 

Europe without Russia 1'212 

Asia with Russia 1'463 

Africa 204 

North America 1'375 

South America 240 

Australia and New Zealand 457 

World 4'951 

 

The data of the nearest stations is used to get interpolated values. The station network is not very 
dense in Africa, but fortunately, yearly temperature variations are smaller near the equator and 
therefore the spatial variations are not big compared with higher latitudes. 

Input variables extracted for the assessment of temperature 
distributions 

The monthly mean temperature and the hourly radiation values (all days and clear sky) are needed as 
inputs. 

The following temperature parameters are used as statistical values: 

• Monthly distribution of the daily temperature. Here 7 points of the monthly distribution are stored 
(1/31, 3/31, 6/31, 15/31, 25/31, 28/31, 30/31 quantiles). 

• Monthly mean temperature 

• Monthly mean of daily minimum and maximum hourly temperatures 

• Mean monthly minimum and maximum hourly temperatures 

• Mean standard deviation and difference of day to day variation, separated for days below and 
above the average daily difference between maximum and minimum temperatures. This 
approximately corresponds to a separation into clear and overcast days or days with high and low 
radiation. 

• Mean minimum daily temperature per year 
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• Mean 4 day minimum temperature per year 

• Mean maximum daily temperature per year 

• As a new parameter in version 6 the minimum and maximum hourly value per month of all 10 
years is introduced. This enables the user to generate time series including 10 year extreme 
hourly values. 

These values have to be estimated from the measurements at the available sites. The extreme values 
are estimated in the winter and summer period of each station. This procedure also works for 
interpolated monthly means. Here the statistical values of the nearest stations were used. The 
statistical values are adjusted by the difference of mean monthly temperatures between the actual site 
and temperature reference sites. 

8.1.2.2 Daily minimum and maximum temperatures 

The daily minimum and maximum temperatures are also calculated with help of the input data. 

First, the monthly factor dX is calculated with measured monthly input values: 

m

dd

Gh

TaTa
dX

min,max, −
=  (8.1.2) 

         ____          ____ 
with Ta,d,max and Tad,min as the monthly mean daily minimum and maximum hourly temperatures and 
Gm the monthly mean global radiation. This gives the general factor for conversion from radiation to 
temperature. 

Then the daily difference between the maximum and minimum temperature is calculated using the 
daily radiation value Ghd: 

dXGhTa dd =  (8.1.3) 

The daily minimum and maximum temperatures are calculated using this daily difference, a step 
based on the assumption that the mean value is the mean of the extreme daily values. 

2

2

max,

min,

ddd

ddd

TaTaTa

TaTaTa

+=

−=
 (8.1.4) 

A check is made to ensure that the daily extremes are within the limits set by the monthly extreme 
hourly values. If the monthly extremes are not equal (a difference of 0.5°C is allowed), the calculated 
maximum and minimum values are set to the monthly extremes. 
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8.1.2.3 Deriving the temperature profile from the irradiance 
profile 

This model was derived in SoDa by Dumortier (2002).  

First, a term showing the response of the air temperature to the solar radiation input is introduced. 
This ratio is called the ground to extraterrestrial irradiation ratio: kx. This is the ratio of the amount of 
solar radiation received on the ground since sunrise, to the amount of solar radiation that a surface 
perpendicular to the sunrays at the top of the atmosphere would have received during the same 
period: 

( )
( )




=

t

sunrise

t

sunrise

dt

dttGh

tkx

0I

 (8.1.5) 

Gh is the global horizontal irradiance 
I0 is the solar constant: 1366 W /m2 (equation 7.4.1) 

It was shown that the variations of the temperature follow the variations of kx. The temperature 
increases when kx increases. The temperature reaches its maximum value at the same time as kx 
reaches its maximum (kxmax). When kx decreases, the temperature decreases.  

It was concluded that during daylight hours the temperature varies linearly with the kx coefficient. The 
slope of this linear relationship seems to depend on the sky conditions. It also seems to be different 
before the maximum value of kx has been reached and afterwards. Finally, it is certainly influenced by 
incoming air masses. 

These conclusions lead to the following Equation (8.1.6) for the slope: 
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−
=

 (8.1.6) 

This slope is used to calculate the hourly temperature values during daytime: 

( ) ( ) ( )

( ) ( ) ( )( )tkxkxslptTatTa
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tkxslptTatTa
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−−=



+=



maxmax

sunrise

max

max

max

max

:

:

 (8.1.7) 

where Ta(tmax) = daily maximum temperature (< tkxmax).  
During night the temperature variation is mainly influenced by the amount of clouds. 

To characterize the sky conditions, we used the Perraudeau nebulosity index: IN (Perraudeau, 1986). 
IN is based on the diffuse fraction and normalizes the value by taking the clear sky as a reference 
(Eqn. 8.1.8). 

In order to define the night time nebulosity, the values between the last value of the day and the first 
value of the following day are interpolated linearly. As last and first value a limit of solar elevation of 5° 
was set. 

The night time cooling rate (NCR) was set to: 

C/hour][   458.0231.0 += INNCR
 (8.1.8) 

This cooling rate is only used for the first day of the generation, because the daily minimum and 
maximum values define the cooling rates: 
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( ) ( ) ( )

( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )sunsetsunset
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dsunset

ttjNCRtTatTa
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jTajTa
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−−=

+−

+−
=

−=

1

1

:dayother any  andsunset after  1,day For 

11

:sunrise before 1,day For 

min,

 (8.1.9) 

As a new feature in version 6.0 the NCR is lowered in the second half of the night (hours from 
midnight till sunrise). During the first 2/3 of this time the NCR is lowered by 50%, during the last 1/3 by 
67%. 

For version 7.2 we updated the model slightly. For cities we enhanced the daily minimum temperature 
by 1°C in cases of daily clearness index > 0.4. 

These algorithms are defined for middle latitudes. For polar regions, special cases have to be defined 
(e.g. a virtual maximum daylength of 19 hours). 

 

8.1.3 Validation 

The model introduced in version 5.0 was only sligtly corrected. The tests were carried out at 6 stations 
in the USA and Switzerland (Miami FL, Denver CO, Portland ME, Seattle WA, Bern CHE, Locarno-
Magadino CHE). In general, validation of the model produced satisfactory results. Generated daily 
temperature profiles are, however, somewhat too flat and lie too near the monthly average. The 
minima and maxima in winter are well reproduced, the summer maxima are sometimes somewhat 
lower than the observed maxima. The average values are automatically corrected. The generator 
produces good distributions (Fig. 8.1.4). The mean extreme values are calculated well (Fig. 8.1.5). 

 

Fig. 8.1.4: Distribution of hourly values of 3 generated (broken line) and 10 measured years 
(1981–90) (line). Temperature for Portland MN, USA. 
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Fig. 8.1.5: Minimum and maximum hourly temperature values per month for Miami, FL, USA. 
Comparison between one generation run (dotted line) and the measured data for the 
years 1981–90 (full line). 

Owing to the fact that the radiation generator produces symmetrical values with respect to solar 
altitude, the temperature generator also produces symmetrical daily profiles. Particularly for high solar 
altitudes, this leads to discrepancies between the calculated and measured standard daily profiles. 
Nevertheless, for most regions the mean temperatures per hour are calculated well (Fig. 8.1.6). The 
standard deviation of the midnight temperature differences (Figs. 8.1.7 and 8.1.8) is well reproduced. 
The distribution of the daily values and their variation are well reproduced despite the fact that these 
are not generated in an intermediate step. 

 

Fig. 8.1.6: Comparison of measured and generated mean temperatures per hour and month in 
Seattle (WA, USA) (January–December). Full lines: measured (1981-90), broken 
lines: generated.  
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Fig. 8.1.7: Monthly standard deviations of midnight temperature differences for Seattle (WA, 
USA). Full lines: 3 generated runs, broken lines: measured (1981–90). 

 

Fig. 8.1.8: Monthly standard deviations of midnight temperature differences for Fairbanks (AK, 
USA). Full lines: 3 generated runs, broken lines: measured (1995–98). 

 

8.1.4 Urban heat model 

With the Meteonorm Version 7.3, a new urban heat model has been introduced. Based on work of the 
EU H2020 climate-fit.city project urban heat data of Bern and Vienna have been included. The urban 
effect of temperature was modelled with help of ERA-Interim / urbclim model (www.urban-climate.be) 
(Remund and Grossenbacher, 2018). More cities will be added in further updates.  

Two major changes have been introduced: 

1. within the city areas 400 data points have been defined for which the input values of the 
temperature distributions (chapter 8.1.2.1) have been calculated. In the city center a grid 
resolution of 2-400 m and at the less central areas a resolution of 1-2 km have been used. 
Like this the daily data generation is based on local measurements 

2. For those 400 points also the relative urban heat index to the place of measurement (meteo 
station outside the city) stored. Like this the urban heat effect can be modelled accurately and 
not just set to approx. 1°C (Table 7.2.2). 

Already in version 7.2 a more realistic (that means lower) night time temperature gradient for urban 
areas has introduced (in case of clear nights). 

http://www.urban-climate.be/
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8.2 Generation of supplementary 
parameters 

Meteonorm endeavours to provide suitable interfaces for most design programs in common use in 
photovoltaics, solar thermal applications and building simulation. For this, a range of output formats is 
provided. Several of these programs require further meteorological parameters in addition to global 
radiation and temperature. To provide these formats, simple formulae are presented below for 
estimating the required parameters. The additional parameters are referred to as supplementary 
parameters to distinguish them from the main parameters, i.e. radiation and temperature, described in 
the previous chapters. For a number of supplementary parameters, monthly values can only be 
obtained by first calculating hourly values. For certain parameters, calculation of hourly average 
values is not necessary if a meteorological or DRY station is chosen.  

The principal problem in simulating further parameters is to ensure their compatibility with the 
previously obtained parameters. The approximate formulae and methods are described below. The 
supplementary parameters are not of the same quality as the main parameters (global radiation and 
temperature) and were not validated in an equally comprehensive way. Most adaptations were made 
using data from 15 weather stations in the USA and Switzerland. 

The following supplementary parameters are calculated in Meteonorm: Dew point temperature, 

relative humidity, mixing ratio, wet-bulb temperature, cloud cover, global and diffuse brightness, 
longwave radiation (incoming, vertical plane, outgoing), wind speed, wind direction, precipitation, 
driving rain, atmospheric pressure and UV radiation (UVA, UVB, erythemal, global and diffuse). The 
computational algorithms for the supplementary parameters are described below. 

8.2.1 Dewpoint temperature and relative humidity 

Dew point temperature (Td) and relative humidity (RH) are related. Using Eqn. 8.2.1, the dew point 
temperature can be calculated from the relative humidity (Iribarne and Godson, 1981) and the relative 
humidity from the dew point temperature using Eqn. 8.2.2 (DWD, 1979). 
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Ta: Air temperature [°C] Td:  Dew point temperature [°C]  

 RH: Relative humidity [%] 
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 (8.2.2) 

e: Saturated vapour pressure at Ta [hPa] es: Saturated vapour pressure at Td [hPa]  

While endeavouring to find a simple definition, it was discovered that the relative humidity at sunrise 
hours is a linear function of average humidity (Eqn. 8.2.3). 

 

( ) ( ) ( ) 95RH 30   ,   79.023 0606, += mmRHmRH m  (8.2.3) 
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The monthly values are adopted with a new system to daily values, which constists of three parts: 

1. Adoption to cloudiness during night: If night 
is cloudy (mean cloudiness > 5 octas):   

 If night 
is not cloudy (mean cloudiness ≤ 5 octas):  

2. Adoption to rain amount of last 3 days: 

( ) ( )

( ) ( )

( ) ( ) 4   ,01 and 0  If

12   ,51 and 5  If

6   ,01 and 5  If

06,6.0,

06,6.0,

06,6.0,

−==−=

+==−

+==−

mmd

mmd

mmdd

RHRHdRRdRR

RHRHdRRdRR

RHRHdRRdRR

 

3. Stochastic part: White Noise generation with N(0,12) [mm] 

With these 3 adoptions the natural range of possible humidities can be reached better than with the 
model of version 5. 

The dewpoint temperature at sunrise hours (here written as 6.00) is then calculated using Eqn. 8.2.1. 
The dewpoint temperature for each hour is calculated by linear interpolation between the sunrise 
values. Additionally (as a new feature in version 5) two different sinus functions were added 
depending on the amount of monthly radiation. If radiation is higher than 100 W/m2 (a threshold for low 
radiation means) the following function is used: 

1. Daily variations :    

2. Stochastic part :  
  
  
  
Both functions are added to the “flat” dewpoint temperature. 
 

 
3. Precipitation:  

 

 

 

These Equations were adapted to different measurements in the USA and Switzerland and reflect 
typical profiles. 

The relative humidity for each hour is calculated using Eqn. 8.2.2.  

Following this, the monthly values of generated data are fitted to the measured monthly average 
values first by lowering or increasing RHm,06 and secondly (if this does not help enough) by 
increasing the generated hourly values by the difference between generated and measured monthly 
average values. The corrections were mainly added at lower values of humidity, in order to avoid too 
many values with 100 % relative humidity. The differences are usually small (in the region of a few 
percent). 
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7.2.1.1 Validation 

A short validation based on visual comparisons has been made at 6 stations (Tab. 8.2.1): 

Tab. 8.2.1: Model sites. Climate zones according Troll and Paffgen (1981). 
 

Name Lon [°] Lat [°] Alt [m] Year Climate zone 

Miami FL USA 80.27 25.80 2 TMY (61-90) V, 1 

Seattle WA USA -122.30 47.45 122 TMY (61-90) III, 2 

Portland ME USA -70.32 43.65 19 TMY (61-90) III, 8 

Boulder CO USA -105.25 40.02 1634 TMY (61-90) III, 4 

Bern-Liebefeld CHE 7.43 46.95 565 1999-2005 III, 3 

Locarno-Magadino CHE 8.88 46.17 197 1999-2005 III, 3 

 

The distributions and the mean daily profiles per month were compared (Fig. 8.2.1 to 8.2.2). The mean 
daily profiles (Fig. 8.2.3 to 8.2.4) as well as a plot of the mean hourly temperature vs. humidity (Fig. 
8.2.5 and 8.2.6) were examined.  

For both dry and wet climates the generated humidity values compare well with measured data. The 
differences between the climates can be distinguished clearly. Nevertheless we advise the user to 
check the outcomes of the humidity generation before using it for delicate simulation processes (like 
cooling). 

 

Fig. 8.2.1: Distribution of dewpoint temperature and relative humidity at Miami FL USA. Solid line = 
measured, dotted line = generated values. 
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Fig. 8.2.2: Distribution of dewpoint temperature and relative humidity at Denver CO USA. Solid line 
= measured, broken line = generated values. 
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Fig. 8.2.3: Mean daily profile of dewpoint temperature at Portland ME USA. Solid line = measured, 
broken line = generated values. The second minimum after noon can be both seen at 
generated as well as at measured values. 

 

Fig. 8.2.4: Mean daily profile of relative humidty at Portland ME USA. Solid line = measured, broken 
line = generated values.  

 

 

Fig. 8.2.5: Mean hourly humidity vs. temperature per month at Miami. E. Solid line = measured, 
broken line = generated values. 
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Fig. 8.2.6: Mean hourly humidity vs. temperature per month at Bern-Liebefeld CH. Solid line = 
measured, broken line = generated values. 
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8.2.2 Wet bulb temperature and mixing ratio 

The moisture content (mixing ratio: mass of water vapor to mass of dry air) is calculated with Eqn. 
8.2.7: 

[g/g]    622.0

[g/g]    622.0

p-e

e
r

p-e

e
r

d

s

s
s

=

=

 (8.2.7) 

rs: saturated mixing ratio [g/g] p: atmosphere pressure at station altitude [hPa] 
es: saturated vapor pressure [hPa] e: vapor pressure [hPa] 
rd: mixing ratio [g/g] 

In version 6.013 (October 4th 2007) the approximation of wet bulb temperature according with 
Normand’s law (Stull, 1995) was replaced with a numerical approximation. This gives the more precise 
results. With Normand’s law the values have been partly too low. 

Wet bulb temperature (Tp) is varied until the following rule is approximated: 

( ) ( )TpTpTapee ps +−−= 00115.0100066.0
 (8.2.8) 

ep = vapour pressure of Tp [hPa] according Eqn. 8.2.2 

 

 

 

 

The Figures below show two comparisons of generated and measured mixing ratio distributions at 
Bern-Liebefeld CHE (Fig. 8.2.7) and Miami FL USA (Fig. 8.2.8). Both site have been generated with 
the new option including 10 year extreme hourly values. 
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Fig. 8.2.7: Distribution of mixing ratio at Bern-Liebefeld CH. Generated including 10 year extremes. 

 

Fig. 8.2.8: Distribution of mixing ratio at Miami FL USA. Generated including 10 year extremes. 

As a new feature in version 6.0 the values for the above mixing ratio vs. temperature diagrams can be 
saved (output format humidity). 
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8.2.3 Cloud cover 

Here too, a new model is used in version 5.0. The knowledge of the cloud cover index is essential for 
estimating the long wave radiation emitted by the atmosphere and for temperature modelling during 
night. The Equation of Kasten and Czeplak (1979) was used for calculating global radiation from clear 
sky radiation and the cloud cover index in two recent publications (Badescu, 1997; Gul et al., 1998). 
Initial checks with this model showed that it could be used for Europe and other temperate zones, but 
changes were needed for other regions. Additionally, when the Kasten and Czeplak algorithm was 
used in reverse to estimate cloud cover, it generally produced results biased towards cloud cover 
values that were too high.  

Therefore, another model was investigated based on the Perraudeau's nebulosity index. This index is 
also needed in the chain of algorithm for temperature generation and is defined as: 
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 (8.2.13) 

The cloud cover index relationship was looked into at Anchorage AK, Seattle WA, Salt Lake City UT, 
Raleigh NC and San Juan PR (Table 8.2.2) and a new formulation has been developed for all sites 
(Fig. 8.2.9): 
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 (8.2.11) 

The denominator in the square route term in Equation 8.2.11, a = 0.825, is a mean value. Its value 
varies slightly with site location Different models for specific sites have been constructed by varying 
the value of a. Because the differences were very small (Anchorage: a = 0.802, San Juan: a = 0.794), 
the use of one standard model is suggested. 

Tab. 8.2.2: Model sites. Climate zones according Troll and Paffgen (1981). 
 

Name Lon [°] Lat [°] Alt [m] Year Climate zone 

Anchorage USA 150.02 W 61.17 N 35 1990 II, 1 

Seattle USA 122.30 W 47.45 N 122 1990 III, 2 

Raleigh USA 78.78 W 35.87 N 134 1990 III, 8 

Salt Lake City USA 111.96 W 40.77 N 1'288 1990 III, 10 

San Juan PR 66.00 W 18.43 N 19 1990 V, 1 
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Fig. 8.2.9: Box plot of measured cloud cover (tenths) and model. Data of Anchorage, Seattle, Salt 
Lake City, Raleigh and San Juan 1990. 

With stochastically generated data the distribution of Perraudeau's index is significantly different. The 
generated IP values are lower than the measured ones. Therefore, this distribution has to be adapted 
to get accurate and bias free cloud cover information. A simple factor of 1.15 introduced to correct the 
generated IPc: 
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 (8.2.12) 

 

The factor was found by iteration at the 5 test stations (Table 8.2.2). 

The factor is calculated with the Index for elevation of the sun above 5°. For night hours the cloud 
cover is interpolated linearly between sunrise and sunset. 

Validation with measured radiation data 

The validation at the same stations gave the following results: 

Tab. 8.2.3: Validation of cloud cover models: 

Model mbe rmse 

Perraudeau -0.1 1.8 

Kasten-Czeplak 0.4 2.2 

 

The accuracy was significantly enhanced with the new model at the five sites. Additionally,  the model 
is very simple and fast for computation and therefore very appropriate for use in Meteonorm. 

Validation with generated radiation data 

The distribution and the mean values of all 5 sites together are better reproduced with the new 
method. The mean values are both 4.7 octas for generated and measured values. The histograms are 
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given in Fig. 8.2.10. Generally, too many intermediate values are generated compared with the 
observed cloud cover. 

 

Fig. 8.2.10: Histogram of measured and generated cloud cover. Data of Anchorage, Seattle, Salt Lake 
City, Raleigh and San Juan 1990 and generated values with mean radiation values of 
1961–90. 

 

8.2.4 Longwave radiation 

The longwave radiation (wavelength > 3 m) is divided into two components: 

1. Longwave horizontal radiation , incoming (Lin); radiation from the sky (upper hemisphere) on 
the horizontal plane (longwave incoming); 

2. Longwave horizontal radiation, upwards (Lup); radiation from the earth's surface transmitted 
upwards (longwave outgoing). 

The longwave radiation on a vertical surface (Lv) is derived from these two components. The radiation 
balance (R) may be determined from the two components (Lin and Lup) together with short wave 
radiation (global radiation) and albedo. 

The new suggested model, as well as the above two existing models, have been validated using 
observed long wave data from 3 of the Baseline Surface Radiation Network (BSRN) stations, Payerne 
Switzerland, Boulder CO USA and Florianopolis Brazil. BSRN measurements are viewed as the world-
leading source of high quality long wave radiation measurements. 

8.2.4.1 Longwave radiation emitted from level ground 

The outgoing longwave radiation from the ground is dependent on the temperature of the surface.  
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A preliminary investigation showed poor coincidence of existing models with BSRN data for hourly 
values. Therefore, a new model based on Swiss stations was developed. First a comparison between 
ground temperature estimated with Eqn. 8.2.13 and Lup at Payerne showed: 

• that over grass the 5 cm temperature is the temperature of emission of the level ground and  

• the emittance of natural ground g is best set to 1.  
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Wind speed (measured at 10 m above ground) has been identified as an important factor. High wind 
speeds considerably lower the temperature differences between 2 m and 5 cm. If no wind speed data 
are available mean values of 3 m/s for the day and 1 m/s for the night can be used in sheltered 
regions. 

During daylight hours, with Gh over 5 W/m2, the following formula has been established, yielding a r2 
value of 0.867 at all 5 Swiss SMI sites (hourly values). 

( )  ( )FFGTT has −−−+= 09.0exp7.01015.0   (8.2.14) 

A new model for night time hours was introduced. This model was constructed using the data of 
Payerne. A maximum deviation of 4.7°C was found. Wind speed is even more important at night than 
during the day because of the higher stability of the planetary boundary layer. Very cold ground 
temperatures can only be reached when wind speed is very low. 

  ( )FFNNNTT as −−+−+= 218.0exp7.4376.0037.00006.0 23
 (8.2.15) 

For Tam < -3°C, max(Ts) = 0 °C (correction for snow coverage). 

8.2.4.2 Longwave radiation emitted by the atmosphere 

The model of Aubinet (1994) is recommended after comparison with models of Dogniaux and Lemoine 
(1984), EMPA (1985) and Gabathuler and Marti (2000). Dogniaux and Lemoine was used in ESRA, 
EMPA models in Meteonorm. Not only did the results speak for Aubinet, but the input parameters (Td, 
Gh and Gc) are also easily available.  

( ) ( ) 4
15.273341.013100log6.1294 ++−+= TaKTeL dsin   (8.2.16) 

In addition to the horizontal information incoming longwave radiation for vertical planes (facades) is 
provided. Here the formulation used in ESRA based on Cole (1979), which addresses the anisotropy, 
is used: 

( )  ( ) 5.015.27300822.07067.01031.0.05.0
4

+++−+= upinv LTaTaNLL   (8.2.17) 

In version 7.2 sky temperature is available as a new optional output parameter. It's calculated based 
on the Equation 8.2.18: 

( ) 15.273
41

−= insky LT  (8.2.18) 

8.2.4.3 Radiation balance 

The radiation balance for horizontal surfaces can be calculated using shortwave and longwave 

parameters as well as albedo (). 

( )−+−= 1hinup GLLR  (8.2.19) 

8.2.4.4 Conclusions on longwave radiation modelling 

Although based on simple approximation of cloud cover and humidity, the long wave models show 
good results at the BSRN stations Payerne, Boulder and Florianopolis (Tab. 8.2.4). 

The combination of the new models leads to a significantly higher accuracy for radiation balance than 
with any other tested combination. 
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Tab. 8.2.4: Error of estimation of hourly values of long wave radiation and ground surface tempera-
tures. mbe means is the error, rmse root mean square error. The dewpoint temperature 
and wind speed used were generated stochastically.  

 

Station R  Ldn  Lup  Ts  

(all BSRN) mbe rmse mbe rmse mbe rmse mbe rmse 

Payerne 0.3 20.8 -0.6 21.3 -0.6 10.4 -0.2 2.0 

Boulder 2.3 48.0 18.3 29.1 4.4 13.1 - - 

Florianopolis - - -4.3 23.5 - - - - 

 

8.2.5 Illuminance 

Global and diffuse illuminance is calculated using generated global radiation with the Perez et al. 
(1990) model. A short comparison with TMY2 data at 7 stations throughout the USA (from Puerto Rico 
to Fairbanks) showed the following discrepancies (Meteonorm – TMY2): Global illuminance: mbe: 
+0.17 klux, rmse: 0.55 klux; diffuse illuminance: mbe: +0.51 klux, rmse: 0.52 klux. 

8.2.6 Wind 

The provision of wind speed and wind direction in Meteonorm is intended as an extension of its output 
for design programs requiring wind data as input. The wind itself is not usually of great importance for 
solar and building (energy) application, and the model presented here is not intended to provide more 
than a rough approximation of monthly average and distributions (at 10 m above ground). The present 
interpolation should not be used for designing wind power plants. The problem of wind simulation for 
any desired location is practically insoluble, since wind speed is greatly influenced by local features, 
and spatial variations are very large. The average monthly value is very difficult to estimate without a 
detailed knowledge of local topography. Detailed information on wind conditions throughout Europe 
may be found in the European Wind Atlas (Risoe National Laboratory, 1990). 

8.2.6.1 Wind speed  

Despite the difficulties described above, hourly wind speed values were nevertheless generated. The 
model was adapted to 30 stations in the USA (Tab. 3.3.1) and 20 stations in Switzerland. It consists of 
a daily model based on average daily global radiation, and on an independent stochastic model: 

( ) ( ) ( )hFKthFhFF tm += ,  (8.2.20) 

where FF‘(h) is the normal distribution of hourly wind speed, Fm is the daily model and Ft the stochastic 
model. The stochastic model is defined as a first order autoregressive process AR(1): 

( ) ( )

( )
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2
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2
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)(1
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 (8.2.21) 

where r(h) is a normally distributed random variable N(0.1). xm is calculated for the relevant climatic 
zone and continent: 
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 (8.2.22) 

The daily model Fm is calculated under local and climatic conditions with daily Kt and Gh values. The 
following categories were adopted:  

Tab. 8.2.5: Categories adopted in the daily model 

N
o. 

Climatic zone Local terrain 

1 Europe, III, 3 (e.g. central Europe) open 

2 III, 3 (Switzerland alone) lake 

3 Alpine zones II - IV mountain valley 

4 Alpine zones II - IV summit 

5 I, 1 – 4, II, 1 – 3, III, 1 – 2 (cold and very cold regions) general 

6 IV, 1 –7, V, 1 – 5 (tropics, subtropics) lake, sea 

7 III, 4 – 12 (e.g. continental regions of the USA) general 

 

In the daily model, the average values of the daily distribution of wind speed on clear days (K t > 0.45, 
Gh > 100 W/m2) are stored for each terrain (Tab. 8.2.6). If the radiation values lie below the limiting 
values, no daily model is included. 

Tab. 8.2.6: Daily model of average daily distribution (Fm) for clear days in each category. The 
values are normalized to 0. 

Hour/climatic zone 1 2 3 4 5 6 7 

1 -0.4 -0.1 -0.8 0.5 -0.3 -1.1 -0.7 

2 -0.5 -0.2 -0.8 0.3 -0.4 -1.2 -0.7 

3 -0.5 -0.2 -0.9 0.2 -0.4 -1.4 -0.8 

4 -0.6 -0.2 -0.9 0.2 -0.5 -1.5 -0.9 

5 -0.6 -0.1 -0.9 0.1 -0.6 -1.5 -0.9 

6 -0.6 -0.3 -1.0 0.1 -0.6 -1.5 -0.9 

7 -0.6 -0.4 -0.9 0.0 -0.6 -1.5 -0.9 

8 -0.5 -0.4 -0.9 -0.2 -0.5 -1.4 -0.7 

9 -0.2 -0.3 -0.7 -0.3 -0.3 -1.0 -0.4 

10 0.0 -0.1 -0.3 -0.5 -0.1 -0.4 0.1 

11 0.3 0.1 0.1 -0.5 0.0 0.3 0.5 

12 0.5 0.2 0.7 -0.5 0.2 0.9 0.8 

13 0.6 0.2 1.1 -0.5 0.4 1.4 1.0 

14 0.7 0.2 1.6 -0.5 0.5 1.8 1.1 

15 0.8 0.3 1.8 -0.4 0.7 2.1 1.2 

16 0.8 0.2 1.9 -0.4 0.8 2.2 1.2 

17 0.7 0.1 1.6 -0.3 0.8 2.1 1.2 

18 0.6 0.1 1.2 -0.1 0.8 1.8 1.0 

19 0.3 0.1 0.6 0.1 0.6 1.3 0.6 

20 0.0 0.3 0.0 0.4 0.3 0.7 0.2 

21 -0.1 0.3 -0.4 0.6 0.0 0.2 -0.3 

22 -0.2 0.2 -0.6 0.7 -0.1 -0.5 -0.5 

23 -0.3 0.1 -0.7 0.6 -0.2 -0.8 -0.6 

24 -0.3 0.1 -0.8 0.6 -0.3 -1.0 -0.6 
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The hourly values (FF‘(h)) were calculated using Eqns. 8.2.20 to 8.2.22 and then transformed to 
correspond to the distribution of hourly values for the site. It is assumed that the form of the 
distribution (f) corresponds to a Weibull distribution (SFOE, 1990) (Eqn. 8.2.23). Following 
transformation, the final values of FF(h) are obtained. 
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 (8.2.23) 

The parameters A and k required in the Weibull distribution, as well as the standard deviation sdi, are 
estimated from wind speed (Eqns. 8.2.24 to 8.2.31). To determine the parameters k, similar local and 
climatic categories are used as for the daily model. The models were changed for version 4. In the 
current version, the parameter A and sdi are calculated mathematically. 

1. Open or Sea/Lake: 

Climate zone III: 

( )( )07.2log35.048.1 −+= monthFFik  (8.2.24) 

 Climate zone IV, 1, latitude > 35°N or latitude < 35°S: 

( )( )59.1log29.021.1 −+= monthFFik  (8.2.25) 

Climate zone IV, 2 – 7, latitude > 35°N or latitude < 35°S: 

( )( )07.2log35.048.1 −+= monthFFik  (8.2.26) 

Climate zone IV, V, 35°S < latitude < 35°N 

( )monthFFik += 21.009.1  (8.2.27) 

 

2. Summits: 

( )( )08.2log243.037.1 −+= monthFFik  (8.2.28) 

3.  Valleys, cities and sites with obstacles around: 

( )( )22.1log37.021.1 −+= monthFFik  (8.2.29) 

Calculation of A and sdi: 

A and sdi are dependent on k: 
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 (8.2.31) 

 

Validation 

The calculated hourly wind values were tested using data from 15 stations in the USA and Switzerland 
(Tab. 3.3.2). The validation was restricted to checking the distributions. The results showed good 
agreement between calculated and measured data (Fig. 8.2.11). The average monthly values of 
generated data come to the original (interpolated or station) values. 
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Fig. 8.2.11: Comparison between distributions of calculated (full line) and measured (broken lines) 

wind speed, showing data from Portland (MN, USA) (above), and Bern-Liebefeld (CH) (below). 

8.2.6.2 Wind direction 

A totally new wind direction generation process is used for version 5. 

The basis of the model are approximately 100 stations with stored wind direction distributions (45°) for 
the months of January and July. Mainly data from ISMCS (NCDC, 1995) are used. 

The nearest site is chosen as representative. The monthly distributions are calculated as a weighted 
average of the July and the January distributions. If monthly mean values of wind direction are 
available, the distribution are turned in order that the maximum value of the distributions matches the 
mean direction value. 

The generation process is based on 3 steps: 

1. Stochastic generation of an hourly time series of wind direction 

( ) ( ) ( )1,01914.0 NtDDtDD +−+=  (8.2.32) 

No relationship has been used between wind direction and other meteorological parameters. 

2. Mapping of the generated values to the interpolated distribution (45° band with, 0 – 360°). 

3. Overlying a second stochastic process in order to get finer resolution: 

( ) ( ) ( )1,081914.0 NtDDtDD +−+=
 (8.2.33) 

4. The definitive wind direction DD is calculated as sum of the two ARMA(0,1) processes: 

( ) ( ) ( )tDDtDDtDD +=  (8.2.34) 
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The resulting wind roses look reasonable. Of course they can only be approximations. Two examples 
from the Atlantic Ocean are shown below (Sable Island / NS Canada and Izana Mountain Top / 
Canaries E). Both the west and the trade wind system are reproduced (Fig. 8.2.12 – 13). 

 

Fig. 8.2.12: Wind rose of Sable Island (west wind system). 

 

Fig. 8.2.13: Wind rose of Izana Mountain Top (trade wind system). 
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8.2.7 Atmospheric pressure 

The atmospheric pressure at a particular station is set to the same value the whole year round. The 
model used for average air pressure assumes a polytropic atmosphere with constant temperature 
decrement (-6.5 °C/km) and constant temperature at sea level (15 °C) (8.2.35). 

( ) 20
15.288

0065.0
11013

264.5

−+






 
−= mdd KTKt

z
p

 (8.2.35) 

pd: Daily mean of atmosphere pressure [hPa]  z: Height above sea level [m] 

As an additional feature in version 6.0 the pressure is varied from day to day to give a certain (when 
not truly realistic) variation. The pressure variations enhance the variations of the mixing ratio and give 
a more realistic distribution of this. 

8.2.8 Heating degree days 

The heating degree days (HDD) represent a simple and commonly used method for calculating the 
energy consumption of heated buildings. In Version 5.0 (as in the previous version), heating degree 

days are estimated using generated hourly temperature series. They can be calculated with the output 
formats LESOSAI or sia 380/1. The generated values have an accuracy of about 1% compared to the 
listed values in Switzerland (sia 381/2). 

8.2.9 Precipitation 

In former versions of Meteonorm, precipitation was only available as monthly sums. A new generation 

process is introduced for version 5. It is based on the broad knowledge available from many 
publications of weather generation, which are mostly related with the WGEN generator (Richardson 
and Wright, 1984).  

The reason for choosing new algorithm was that time series of precipitation are also needed in 
building simulation and that no existing method was based on solar radiation, which is available in this 
case. Generally the generation of the dry or wet days' time series is the first step. Additionally the 
existing generators are fitted to agricultural simulations, mostly provide only daily time series and are 
site dependent. The proposed method produces first daily precipitation series and then hourly values 
for every site worldwide. 

8.2.9.1 Daily precipitation values 

At the beginning of the generation process the worldwide, monthly values of precipitation and the 
number of days with precipitation above 1 mm are known. Additionally clear and all sky radiation, 
cloud amounts and temperature (ambient, dewpoint) time series are available. The produced time 
series correspond to mean monthly means. 

Before the generation starts the number of days with precipitation above 0.1 mm (Rd0) is calculated 
with the following Equation: 

10
1

0 0   ,  445.3971.0 RdRd
RR

Rd
INTRd

m









+=  (8.2.36) 

The Equation has been adapted to data of 25 European stations with measurements from 1901–99 
(r2= 0.726). 

A second value for the generation process is calculated: the mean amount of dry spells (Ds) per 
month: 
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( )  01 0   ,  ln507.6041.22 RdndaysDsRdINTDs −−=  (8.2.37) 

The Equation has been adapted to data of the same 25 European stations (r2= 0. 773).  

The generation process starts with finding the n = Rd0 days with the lowest clearness indexes of the 
month. These days are assumed as days with precipitation. The days are sorted according the 
clearness indexes. The lower the clearness index, the higher the precipitation is set. 

The amount of precipitation per day is calculated with a Weibull distribution (Selker and Haith, 1990) 
also used in the ClimGen generator (http://www.bsyse.wsu.edu/climgen/ ). 
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The cumulated probabilities Pn are stretched slightly. First tests have shown that the distribution are 
better reproduced this way. 

The precipitation amount is summed for each month. If the sum differs from the interpolated mean the 
daily values are corrected by a factor. 

If the generated dry spells are lower than the modelled ones (Eqn 8.2.37), the rainy days are moved 
by one day if possible in order to achieve the correct days with dry spells.  

 

8.2.9.2 Hourly values 

First the number of hours with precipitation (for days with precipitation) is calculated with the following 
Equation: 
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 (8.2.40) 

The number of hours of precipitation is mainly dependent on the amount of precipitation per day (RRd) 

and the mean intensity of the precipitation per day of the month (
0Rd

RRm ). The Equation was adapted 

to hourly precipitation data of Bern-Liebefeld, Neuchatel, Davos, Luzern and Locarno-Magadino with 
data of 2000 and 2001 (r2=0.815). The numbers of hours are set between 1 and 24. This set of 
stations includes regions both south and north of the Alps with different kinds of precipitation regimes 
(advective and convective). The factor 1.5 was introduced due to lowering of the precipitation hours by 
other parts of the chain of algorithms. Mainly the time series of cloud cover limits the hours of 
precipitation. 

Hours with precipitation have to fulfil a second condition: the mean cloud cover has to be at least 6 
octas. If less hours with 6 octas are available per day, the number of hours are set to this lower value.  

In a second step, the possibility of precipitation per hour is simulated with an autoregressive process 
and a mean daily profile. This is done because the possibility of precipitation is generally higher in the 
evening and the night than in the morning hours.  

http://www.bsyse.wsu.edu/climgen/
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( ) ( ) ( )1,02.017.0 NhPhP ss +−=  (8.2.42) 

( ) ( ) ( )hPhPhP smRRh
+=  (8.2.43) 

The hours with precipitation is moved to hours with 7 or 8 octas of cloud cover by enhancing the 
possibility at hours with 8 octas by 0.5 and at hours with 7 octas by 0.25. The possibility of 
precipitation is used to sort the hours with precipitation. If e.g. the day has 5 hours with precipitation 
the hours with the 5 highest values of PRRh are chosen and sorted.  

The amount of precipitation per hour is defined with a Weibull distribution: 
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The cumulated probabilities Pn are stretched slightly. First tests have shown that the distributions are 
better reproduced this way. n corresponds to the sorted number of hours with precipitation according 
to the possibility (PRRh). 

The generated hourly values are corrected in order to match the daily sums. 

 

8.2.9.3 Validation 

A short validation at 6 stations in Europe was performed (Tab. 8.2.7).  

Tab. 8.2.7: Test sites for precipitation model. 

Site Source Latitude 
[°,’] 

Longitude 
[°,’] 

Altitude 
[m] 

Period Time resolution 

Bern-Liebefeld Meteoswiss 46.56 7.25 565 2000–2001* Hour 

Locarno-Magadino Meteoswiss 46.10 8.53 197 2000–2001* Hour 

Davos Meteoswiss 46.49 9.51 1590 2000–2001* Hour 

Vaexjoe/Kronoberg KNMI 56.87 14.80 166 1901–99 Day 

Frankfurt KNMI 50.12 8.67 103 1901–99 Day 

Marseille KNMI 43.31 5.40 75 1901–99 Day 

* Figures in Tab. 8.2.8 have beenwere adapted to mean values 1961–90. 

The following points were investigated: Days with precipitation over a certain amount, maximum daily 
and hourly sums (mean values per year), mean maximum duration of dry and wet spells per year and 
hours of precipitation (Tab. 8.2.8). 
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Tab. 8.2.8: Comparison between measured and generated time series of precipitation. 

Site Type RR>0 mm 
[days] 

RR>1.0 
mm [days] 

RR>12.5 
mm [days] 

Max. daily 
sum [mm] 

Max. hour. 
sum [mm] 

Dry spell 
[days] 

Wet spell 
[days] 

RR 
[mm] 

Prec. 
Hour [h] 

Bern Measured 170 126 24 47.2 19.0 13 17 1029 1107 

Bern Generated 167 126 23 40.5 13.5 9 9 1025 1034 

Locarno Measured 138 105 47 113.0 36.8 33 10 1773 1149 

Locarno Generated 118 101 42 87.5 29.1 18 5 1772 1084 

Davos Measured 181 129 26 70.1 10.6 14 11 1084 1371 

Davos Generated 165 129 26 44.3 15.2 13 8 1081 1053 

Vaexjoe Measured 186 117 14 32.3 - 16 14 652 - 

Vaexjoe Generated 181 113 12 23.4 8 10 10 610 893 

Frankfurt Measured 172 110 14 35.3  17 12 650  

Frankfurt Generated 155 106 14 30.4 10.4 18 6 685 845 

Marseille Measured 83 56 20 65.2  33 7 596  

Marseille Generated 80 60 13 36.1 12.2 28 9 545 523 

Mean 
difference 

% 
-7 % -1 % -10 % -27.8 % -12.8 % -24 % -33 % -1 % -25 % 

 

Days with precipitation are reproduced well. Especially the lower thresholds (RRd>0mm, RRd>1mm) 
are given precisely. Monthly and yearly sums correspond to input values. Small differences in the 
table are induced by different time periods. The maximum daily sum is calculated too low (-28%). The 
maximum hourly sum is calculated quite precisely. The amount of wet and dry spells are calculated 
too low. This is mainly induced by the fact that the calculations are fitted to monthly means and not to 
yearly means. The number of hours with precipitation is also too low. Nevertheless, the deviations the 
different magnitudes of the precipitation for the different climates are clearly observable. 

In the following figures two time series of hourly precipitation for Bern-Liebefeld are shown. Figure 
8.2.14 shows a generated time series, 8.2.15 a measured time series (year 2000). 

 

Fig. 8.2.14 Generated time series for Bern-Liebefeld. 
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Fig. 8.2.15 Measured time series for Bern-Liebefeld (year 2000). 

 

8.2.9.4 Driving rain 

Driving rain is rain that is carried by the wind and driven onto the building envelope (façades and 
roofs). It is a complex phenomenon of falling raindrops in a turbulent flow of wind around a building. It 
is one of the important climatological factors which determine long-term use and durability of building 
envelopes. 

Driving rain is especially important for humidity processes, which are e.g. simulated by WUFI. For this 
format the output format TRY can be saved (without driving rain, but with precipitation and wind 
speed). 

Straube's method (Straube, 2001) for calculating the amount of wind driven rain impinging on a wall 
was selected for use. It was chosen because it is one of the most conservative of the methods 
generally available and was also the method selected for incorporation into current models (Cornick et 
al., 2002). It is based on Lacy’s method (Lacy, 1965). 

The top corner of the building was assumed to be the location of interest; this was used in determining 
the RAF factor. 

( ) hh RRFFRRDRFRAFWDR = cos  (8.2.46) 

where: WDR is the wind driven load (mm/h), 
RAF is the rain admittance factor. set to 0.9 here, 
RRh is the horizontal rainfall intensity (mm), 
FF is the wind speed at 10 m above ground (m/s), 
and θ is the angle of the wind to the wall normal. 

 

In Meteonorm WDR is given without the factor cos θ, if elevation is set to 0. 

The driving rain factor DRF can by calculated from: 

tV
DRF

1
=  (8.2.47) 

where: DRF is the driving rain factor 
Vt is the terminal velocity of raindrops (m/s) 
 
The terminal velocity can be calculated from: 

9.2 ,   054888.0888016.091884.416603.0 32 +−+−=tV  (8.2.48) 
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While Straube recommended using D50 for the raindrop diameter, the predominant raindrop diameter, 
Dpred, is used here for Φ (like for other current models like MEWS). This is the diameter of drops that 
accounts for the greatest volume of water in the air.  
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where:  

232.0
3.1 hRRa =  (8.2.50) 

n = 2.25 
 
 

8.2.10 Spectral radiation 

For spectral radiation we use the model developed by UMIST in the framework of the EU IST project 
SoDa. Spectral radiation is used here as an umbrella term for UV bands UVA, UVB and the erythemal 
radiation (Page and Kift, 2003).  

Four UV products are delivered: 

•  the estimation of UVA radiation between 320 and 400 nm. 

•  the estimation of UV B irradiation between 290 and 320 nm. 

•  the estimation of biologically weighted UV radiation, UV erythemal radiation. 

• UV Index: clear sky erythemal UV radiation in Wh/m2 multiplied by a factor 40. This gives a 
hint on the amount of sun protection needed at clear sky conditions. 

A detailed description of the model would exceed the range of this handbook. The model has not yet 
been validated. 

The model consists of 4 main steps: 

1. Calculation of the clear sky radiation. 

2. Calculation of the overcast radiation. 

3. Calculation of mixed situations. 

4. Calculation of inclined planes. For this a slightly adopted Perez model is used (chapter 6.7.2). 

At each step global and diffuse radiation is calculated. The models were adapted to SMARTS 2 
(Gueymard, 1995) output. Linke turbidity, Angström Beta and water vapour are the most important 
inputs.  



Theory  Meteonorm 71 

8.2.11 Sunshine duration 

The simple equation to calculate sunshine duration is based on clearness index: 

With changes included in Version 6 a better adoption to monthly values and to high horizons are 
possible. 

( ) 2

max exp lh ktktcSdSd −=     where (8.2.51) 

Sdmax  =  maximum possible sunshine duration (depending on chosen horizon) 
ktl  =  0.75  

 

 

If the sunshine duration differs more than 10% and 10 hours the the values of ch and ktl are variied 
until the Sunshine duration without horizon equals the monthly sunshine duration: 

1. ktl: variations from 0.62 – 0.92 allowed 

2. ch: -7 to -60 allowed 

If within given ktl and ch values the generation differs more than the 10% and 10 hours, the sunshine 
duration calculation is aborted. 

As an additional feature in version 6.0 the monthly sunshine duration data are cleared for horizon 
effect.  

8.2.12 Photosynthetically active radiation (PAR) 

In the patch version 6.016 (November 7th 2007) the parameter photosynthetically active radiation 
(PAR) was introduced. The model of Alados-Arboledas (2000) as stated in the paper of Rubio et al 
(2005) is used: 

 
6.4

)sin(099.0)ln(191.0832.1 hskt
GhGPAR

+−
=  (8.2.52) 

The values are given in W/m2 (the values in E/m2s are therefore divided with the factor 4.6). 

PAR is available in the output format science and user defined (as option). 

A short validation at three BSRN/Surfrad sites Desert Rock NV, Boulder CO and Goodwin Creek (MS) 
with data of 3 years (2004 – 2006) showed an mbe of 2 W/m2 and a rmse of 4 W/m2 (5%) for monthly 
means. 

8.2.13 Precipitable Water 

With Meteonorm version 7.2. precipitable water (PrecW in mm) became available as optional 
parameter in the user defined format (up to this version it was included in formats eps, TMY2 and 3). 
The calculation is based on Reitan (1963) only depending on dew point temperature (Td): 

( )075.007.0exp10PrecW −= Td     [mm] (8.2.53) 

zch +−= 001368.0239.10
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8.3  Uncertainty model 
This chapter shows the uncertainty model introduced in Meteonorm version 7. Uncertainty of the 
yearly values of global and direct radiation as well as beam radiation will be given. Uncertainty is an 
important information for planners. This chapter has been slightly updated for version 7.2. 

 

8.3.1 Method 

The calculation of the uncertainty values of global radiation are based on the following three points: 

• Uncertainty of ground measurements (measurement itself and long term variability of local 
climate) 

• Uncertainty of interpolation (interpolation of ground measurements and uncertainty of satellite 

based data) 

• Uncertainty of the splitting into diffuse and direct radiation and inclined planes 

The uncertainty of the ground measurements (Uq) is based on the values of 4 parameters, which have 
been classified (Table 8.3.1).  

Table 8.3.1: Uncertainty parameters of the ground measurements.  

  Low quality Mid quality High quality 

 Value 1 2 3 

1 Duration < 10 years 10 – 19 years >= 20 years 

2 Std. deviation > 7 W/m2 4 - 7 W/m2 < 4 W/m2 

3 Trend > 6 W/m2 decade 3 - 6 W/m2 decade < 3 W/m2 decade 

4 Up-to-dateness End < 1980 End 1981 - 2000 End > 2000 

 

The values (1 – 3) of the quality levels of the four parameters are summed up, weighted and added to 
the standard deviation (Sdm) of the long term means (10 or 20 years) to get the uncertainty of the 
ground measurements (Um) with equation 8.3.1: 

( )
3

12 −
+=

q

mm

U
SdU

 (8.3.1) 

 

The uncertainty of the interpolation (Ui,g) of ground stations is modelled with help of the distance to the 
nearest station. An area wide calculation of the uncertainty couldn’t be done as there are too few 
stations in some regions. 

The uncertainty of the interpolation of satellite data (Usat) is modelled in dependence on the latitude 
and the albedo. The higher the latitude and the higher the albedo (e.g. salt lakes in deserts or snow 
rich mountains) the bigger the uncertainty. Additionally the spatial resolution and the quality of the 
used satellite source are considered. 

If both satellite and ground are used then the weight a is used, which depends on the distance from 
the nearest ground site (8.3.2): 
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 (8.3.2) 

For Europe and Northern Africa (Meteosat high resolution area) with higher accuracy of satellite data 
d1 is set to 10 and d2 to 50 km. For areas outside this area, but still covered by Meteosat the distances 
d1 and d2 are set to 20 and 100 km. Outside Meteosat area d1 is set to 30 km and d2 to 200 km. 

The calculation of the combined uncertainty (Ut) is depending on the situation (equation 8.3.3 or 4). 
The interpolation and ground measurement uncertainty is assumed independent. 

• No interpolation: 

mt UU =  (8.3.3) 

• With interpolation 

22
imt UUU +=  (8.3.4) 

The uncertainty of the beam and the radiation on inclined planes is depending on the uncertainty of 
the global radiation. With help of 13 sites with high quality and long term global and direct 
measurements (mainly BSRN sites) a model based on uncertainty of global radiation has been made. 

 

8.3.2 Results 

The uncertainty of the ground measurements ranges between 2 and 10%. In Europe most stations are 
lying between 2 and 4%. The stations with lowest uncertainty found are San Sebastian (Spain),  
Bermuda and Broome Airp. (Australia) with 2% of uncertainty. The stations with highest uncertainty 
are New Delhi (India, 8.3%), Hirado (Japan, 9.7%) and Nandi (Fiji, 11.5%). Those uncertainties are 
based on quality (technique, duration) as well as on climatological reasons.  

For ground interpolation at a distance of 2 km the uncertainty is at 1% and at 100 km the uncertainty is 
generally at 6% (Fig. 8.3.1). For distances bigger than 2000 km the uncertainty is set constant at 8%. 

 

Figure 8.3.1:  Uncertainty of interpolation of ground measurements vs distance.  
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The value of the uncertainty for satellite data is ranging between 3 and 5 % for Europe and Africa 
(Meteosat) and 3.4 and 5.4 % for all other satellites (Fig. 8.3.2). 

 

Figure 8.3.2:  Uncertainty of satellite data in dependence of latitude and source of satellite. MSG= 
Meteosat Second Generation, hr = high resolution area (Europe). 

For areas with high albedo values (yearly means of  > 0.2) the uncertainty is enhanced based on 
equation (8.3.5): 

( )
6.0

08.0
2.0, −= albsatU  (8.3.5) 

This addition is lowered for Europe by 50% due to the fact, that in this region high albedo is 
considered in the satellite model from MeteoSwiss (Helioclim) (). 

 

Typically the uncertainty of the beam (Udir) is twice as high as the global radiation (8.3.6): 

( )220.4 −+= tdir UU  (8.3.6) 

 

The uncertainty of the radiation on inclined planes is dependent on the uncertainty of the horizontal 

radiation and the plane inclination () and is defined by the following equation (8.3.7): 
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To conclude the findings the overall uncertainties of Meteonorm values have the following ranges: 

• Global radiation: 3 – 9% 

• Direct normal radiation: 6 – 17% 

 
Typical values for European sites are: 

• Pully, meteo station, Switzerland: 3% for global radiation, 5% for direct radiation 

• Olten, interpolated site, Switzerland: 4% for global radiation, 7% for direct radiation 

• Madrid, meteo station, Spain: 3% for global radiation, 6% for direct radiation 

• Pleven, Bulgaria, meteo station: 8% for global radiation, 16% for direct radiation 
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The global median value of the uncertainty on continents for global radiation comes to 7% and for 
beam radiation to 13%. 

We have to bear in mind, that also the uncertainty modeling has uncertainties (which haven’t been 
estimated yet). 
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8.4  Summary of results 
Tables 8.3.1 and 8.3.2 provide a short summary of the main data used in validating the various 
models and the combined model in Chap. 8. 

Tab. 8.3.1: Summary of principal data for interpolation validation. 

Model rmse 

 Yearly means/sums 

Interpolation of Gh 7% 

Interpolation of Ta 1.2 °C 

Interpolation of Td 1.1 °C 

Interpolation of FF 1.1 m/s 

Interpolation of RR 25 mm  

Interpolation of Rd 26 days 

Interpolation of Sd 9.1% 

 

Tab. 8.3.2: Summary of principal data for generation model validation. 

Model Resolution Remarks mbe rmse 

Generation of N hour  -0.1 octas 1.8 octas 

Calculation of beam:     

- Hourly model hour Gh measured, (rmse: 
Gh > 0) 

3 W/m2 86 W/m2 

- Hourly model month Gh generated - 6.6 W/m2 (3.4%) 

Calculation of Gk:     

- plane inclination 35° hour Gh measured, (rmse: 
Gh > 0) 

5 W/m2 33 W/m2 

- plane inclination 90° hour Gh measured, (rmse: 
Gh > 0) 

3 W/m2 51 W/m2 

- all (Perez) Month Gh generated 2.4 W/m2 9.8 W/m2 

- all (Hay) Month Gh generated -1.6 W/m2 10.5 W/m2 

- Perez inclination 0-50° Year Gh generated - 4.6 W/m2 

- Perez inclination >50° Year Gh generated - 5.2 W/m2 
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